SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P04932 from www.uniprot.org...

The NucPred score for your sequence is 0.82 (see score help below)

   1  MKIIFFLCSFLFFIINTQCVTHESYQELVKKLEALEDAVLTGYSLFHKEK    50
51 MILNEEEITTKGASAQSGTSGTSGTSGPSGPSGTSPSSRSNTLPRSNTSS 100
101 GASPPADASDSDAKSYADLKHRVRNYLLTIKELKYPQLFDLTNHMLTLCD 150
151 NIHGFKYLIDGYEEINELLYKLNFYFDLLRAKLNDVCANDYCQIPFNLKI 200
201 RANELDVLKKLVFGYRKPLDNIKDNVGKMEDYIKKNKKTIENINELIEES 250
251 KKTIDKNKNATKEEEKKKLYQAQYDLSIYNKQLEEAHNLISVLEKRIDTL 300
301 KKNENIKELLDKINEIKNPPPANSGNTPNTLLDKNKKIEEHEKEIKEIAK 350
351 TIKFNIDSLFTDPLELEYYLREKNKNIDISAKVETKESTEPNEYPNGVTY 400
401 PLSYNDINNALNELNSFGDLINPFDYTKEPSKNIYTDNERKKFINEIKEK 450
451 IKIEKKKIESDKKSYEDRSKSLNDITKEYEKLLNEIYDSKFNNNIDLTNF 500
501 EKMMGKRYSYKVEKLTHHNTFASYENSKHNLEKLTKALKYMEDYSLRNIV 550
551 VEKELKYYKNLISKIENEIETLVENIKKDEEQLFEKKITKDENKPDEKIL 600
601 EVSDIVKVQVQKVLLMNKIDELKKTQLILKNVELKHNIHVPNSYKQENKQ 650
651 EPYYLIVLKKEIDKLKVFMPKVESLINEEKKNIKTEGQSDNSEPSTEGEI 700
701 TGQATTKPGQQAGSALEGDSVQAQAQEQKQAQPPVPVPVPEAKAQVPTPP 750
751 APVNNKTENVSKLDYLEKLYEFLNTSYICHKYILVSHSTMNEKILKQYKI 800
801 TKEEESKLSSCDPLDLLFNIQNNIPVMYSMFDSLNNSLSQLFMEIYEKEM 850
851 VCNLYKLKDNDKIKNLLEEAKKVSTSVKTLSSSSMQPLSLTPQDKPEVSA 900
901 NDDTSHSTNLNNSLKLFENILSLGKNKNIYQELIGQKSSENFYEKILKDS 950
951 DTFYNESFTNFVKSKADDINSLNDESKRKKLEEDINKLKKTLQLSFDLYN 1000
1001 KYKLKLERLFDKKKTVGKYKMQIKKLTLLKEQLESKLNSLNNPKHVLQNF 1050
1051 SVFFNKKKEAEIAETENTLENTKILLKHYKGLVKYYNGESSPLKTLSEES 1100
1101 IQTEDNYASLENFKVLSKLEGKLKDNLNLEKKKLSYLSSGLHHLIAELKE 1150
1151 VIKNKNYTGNSPSENNTDVNNALESYKKFLPEGTDVATVVSESGSDTLEQ 1200
1201 SQPKKPASTHVGAESNTITTSQNVDDEVDDVIIVPIFGESEEDYDDLGQV 1250
1251 VTGEAVTPSVIDNILSKIENEYEVLYLKPLAGVYRSLKKQLENNVMTFNV 1300
1301 NVKDILNSRFNKRENFKNVLESDLIPYKDLTSSNYVVKDPYKFLNKEKRD 1350
1351 KFLSSYNYIKDSIDTDINFANDVLGYYKILSEKYKSDLDSIKKYINDKQG 1400
1401 ENEKYLPFLNNIETLYKTVNDKIDLFVIHLEAKVLNYTYEKSNVEVKIKE 1450
1451 LNYLKTIQDKLADFKKNNNFVGIADLSTDYNHNNLLTKFLSTGMVFENLA 1500
1501 KTVLSNLLDGNLQGMLNISQHQCVKKQCPQNSGCFRHLDEREECKCLLNY 1550
1551 KQEGDKCVENPNPTCNENNGGCDADAKCTEEDSGSNGKKITCECTKPDSY 1600
1601 PLFDGIFCSSSNFLGISFLLILMLILYSFI 1630

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.