SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P05661 from www.uniprot.org...

The NucPred score for your sequence is 0.91 (see score help below)

   1  MPKPVANQEDEDPTPYLFVSLEQRRIDQSKPYDSKKSCWIPDEKEGYLLG    50
51 EIKATKGDIVSVGLQGGEVRDIKSEKVEKVNPPKFEKIEDMADMTVLNTP 100
101 CVLHNLRQRYYAKLIYTYSGLFCVAINPYKRYPVYTNRCAKMYRGKRRNE 150
151 VPPHIFAISDGAYVDMLTNHVNQSMLITGESGAGKTENTKKVIAYFATVG 200
201 ASKKTDEAAKSKGSLEDQVVQTNPVLEAFGNAKTVRNDNSSRFGKFIRIH 250
251 FGPTGKLAGADIETYLLEKARVISQQSLERSYHIFYQIMSGSVPGVKDIC 300
301 LLTDNIYDYHIVSQGKVTVASIDDAEEFSLTDQAFDILGFTKQEKEDVYR 350
351 ITAAVMHMGGMKFKQRGREEQAEQDGEEEGGRVSKLFGCDTAELYKNLLK 400
401 PRIKVGNEFVTQGRNVQQVTNSIGALCKGVFDRLFKWLVKKCNETLDTQQ 450
451 KRQHFIGVLDIAGFEIFEYNGFEQLCINFTNEKLQQFFNHIMFVMEQEEY 500
501 KKEGINWDFIDFGMDLLACIDLIEKPMGILSILEEESMFPKATDQTFSEK 550
551 LTNTHLGKSAPFQKPKPPKPGQQAAHFAIAHYAGCVSYNITGWLEKNKDP 600
601 LNDTVVDQFKKSQNKLLIEIFADHAGQSGGGEQAKGGRGKKGGGFATVSS 650
651 AYKEQLNSLMTTLRSTQPHFVRCIIPNEMKQPGVVDAHLVMHQLTCNGVL 700
701 EGIRICRKGFPNRMMYPDFKMRYQILNPRGIKDLDCPKKASKVLIESTEL 750
751 NEDLYRLGHTKVFFRAGVLGQMEEFRDERLGKIMSWMQAWARGYLSRKGF 800
801 KKLQEQRVALKVVQRNLRKYLQLRTWPWYKLWQKVKPLLNVSRIEDEIAR 850
851 LEEKAKKAEELHAAEVKVRKELEALNAKLLAEKTALLDSLSGEKGALQDY 900
901 QERNAKLTAQKNDLENQLRDIQERLTQEEDARNQLFQQKKKADQEISGLK 950
951 KDIEDLELNVQKAEQDKATKDHQIRNLNDEIAHQDELINKLNKEKKMQGE 1000
1001 TNQKTGEELQAAEDKINHLNKVKAKLEQTLDELEDSLEREKKVRGDVEKS 1050
1051 KRKVEGDLKLTQEAVADLERNKKELEQTIQRKDKELSSITAKLEDEQVVV 1100
1101 LKHQRQIKELQARIEELEEEVEAERQARAKAEKQRADLARELEELGERLE 1150
1151 EAGGATSAQIELNKKREAELSKLRRDLEEANIQHESTLANLRKKHNDAVA 1200
1201 EMAEQVDQLNKLKAKAEHDRQTCHNELNQTRTACDQLGRDKAAQEKIAKQ 1250
1251 LQHTLNEVQSKLDETNRTLNDFDASKKKLSIENSDLLRQLEEAESQVSQL 1300
1301 SKIKISLTTQLEDTKRLADEESRERATLLGKFRNLEHDLDNLREQVEEEA 1350
1351 EGKADLQRQLSKANAEAQVWRSKYESDGVARSEELEEAKRKLQARLAEAE 1400
1401 ETIESLNQKCIGLEKTKQRLSTEVEDLQLEVDRANAIANAAEKKQKAFDK 1450
1451 IIGEWKLKVDDLAAELDASQKECRNYSTELFRLKGAYEEGQEQLEAVRRE 1500
1501 NKNLADEVKDLLDQIGEGGRNIHEIEKARKRLEAEKDELQAALEEAEAAL 1550
1551 EQEENKVLRAQLELSQVRQEIDRRIQEKEEEFENTRKNHQRALDSMQASL 1600
1601 EAEAKGKAEALRMKKKLEADINELEIALDHANKANAEAQKNIKRYQQQLK 1650
1651 DIQTALEEEQRARDDAREQLGISERRANALQNELEESRTLLEQADRGRRQ 1700
1701 AEQELADAHEQLNEVSAQNASISAAKRKLESELQTLHSDLDELLNEAKNS 1750
1751 EEKAKKAMVDAARLADELRAEQDHAQTQEKLRKALEQQIKELQVRLDEAE 1800
1801 ANALKGGKKAIQKLEQRVRELENELDGEQRRHADAQKNLRKSERRVKELS 1850
1851 FQSEEDRKNHERMQDLVDKLQQKIKTYKRQIEEAEEIAALNLAKFRKAQQ 1900
1901 ELEEAEERADLAEQAISKFRAKGRAGSVGRGASPAPRATSVRPQFDGLAF 1950
1951 PPRFDLAPENEF 1962

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.