SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P06213 from www.uniprot.org...

The NucPred score for your sequence is 0.66 (see score help below)

   1  MATGGRRGAAAAPLLVAVAALLLGAAGHLYPGEVCPGMDIRNNLTRLHEL    50
51 ENCSVIEGHLQILLMFKTRPEDFRDLSFPKLIMITDYLLLFRVYGLESLK 100
101 DLFPNLTVIRGSRLFFNYALVIFEMVHLKELGLYNLMNITRGSVRIEKNN 150
151 ELCYLATIDWSRILDSVEDNYIVLNKDDNEECGDICPGTAKGKTNCPATV 200
201 INGQFVERCWTHSHCQKVCPTICKSHGCTAEGLCCHSECLGNCSQPDDPT 250
251 KCVACRNFYLDGRCVETCPPPYYHFQDWRCVNFSFCQDLHHKCKNSRRQG 300
301 CHQYVIHNNKCIPECPSGYTMNSSNLLCTPCLGPCPKVCHLLEGEKTIDS 350
351 VTSAQELRGCTVINGSLIINIRGGNNLAAELEANLGLIEEISGYLKIRRS 400
401 YALVSLSFFRKLRLIRGETLEIGNYSFYALDNQNLRQLWDWSKHNLTITQ 450
451 GKLFFHYNPKLCLSEIHKMEEVSGTKGRQERNDIALKTNGDQASCENELL 500
501 KFSYIRTSFDKILLRWEPYWPPDFRDLLGFMLFYKEAPYQNVTEFDGQDA 550
551 CGSNSWTVVDIDPPLRSNDPKSQNHPGWLMRGLKPWTQYAIFVKTLVTFS 600
601 DERRTYGAKSDIIYVQTDATNPSVPLDPISVSNSSSQIILKWKPPSDPNG 650
651 NITHYLVFWERQAEDSELFELDYCLKGLKLPSRTWSPPFESEDSQKHNQS 700
701 EYEDSAGECCSCPKTDSQILKELEESSFRKTFEDYLHNVVFVPRKTSSGT 750
751 GAEDPRPSRKRRSLGDVGNVTVAVPTVAAFPNTSSTSVPTSPEEHRPFEK 800
801 VVNKESLVISGLRHFTGYRIELQACNQDTPEERCSVAAYVSARTMPEAKA 850
851 DDIVGPVTHEIFENNVVHLMWQEPKEPNGLIVLYEVSYRRYGDEELHLCV 900
901 SRKHFALERGCRLRGLSPGNYSVRIRATSLAGNGSWTEPTYFYVTDYLDV 950
951 PSNIAKIIIGPLIFVFLFSVVIGSIYLFLRKRQPDGPLGPLYASSNPEYL 1000
1001 SASDVFPCSVYVPDEWEVSREKITLLRELGQGSFGMVYEGNARDIIKGEA 1050
1051 ETRVAVKTVNESASLRERIEFLNEASVMKGFTCHHVVRLLGVVSKGQPTL 1100
1101 VVMELMAHGDLKSYLRSLRPEAENNPGRPPPTLQEMIQMAAEIADGMAYL 1150
1151 NAKKFVHRDLAARNCMVAHDFTVKIGDFGMTRDIYETDYYRKGGKGLLPV 1200
1201 RWMAPESLKDGVFTTSSDMWSFGVVLWEITSLAEQPYQGLSNEQVLKFVM 1250
1251 DGGYLDQPDNCPERVTDLMRMCWQFNPKMRPTFLEIVNLLKDDLHPSFPE 1300
1301 VSFFHSEENKAPESEELEMEFEDMENVPLDRSSHCQREEAGGRDGGSSLG 1350
1351 FKRSYEEHIPYTHMNGGKKNGRILTLPRSNPS 1382

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.