SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P06882 from www.uniprot.org...

The NucPred score for your sequence is 0.66 (see score help below)

   1  MMTLVLWVSTLLSSVCLVAANIFEYQVDAQPLRPCELQREKAFLKQDEYV    50
51 PQCSEDGSFQTVQCQNDGQSCWCVDSDGTEVPGSRQLGRPTACLSFCQLH 100
101 KQRILLSSYINSTDALYLPQCQDSGNYAPVQCDLQQVQCWCVDTEGMEVY 150
151 GTRQQGRPTRCPRSCEIRSRRLLHGVGDKSPPQCDADGEFMPVQCKFVNT 200
201 TDMMIFDLIHNYNRFPDAFVTFSAFRNRFPEVSGYCYCADSQGRELAETG 250
251 LELLLDEIYDTIFAGLDQASTFTQSTMYRILQRRFLAIQLVISGRFRCPT 300
301 KCEVEQFTATSFGHPYIPSCHRDGHYQTVQCQMERMCWCVDAQGIEIPGT 350
351 RQQGQPLFCAKDQSCASERQQALSRLYFETPGYFSPQDLLSSEDRLVPVS 400
401 GARLDISCPPRIKELFVDSGLLRSIAVERYQQLSESRSLLREAIRAIFPS 450
451 RELAGLALQFTTNPKRLQQNLFGGTFLVNAAQLNLSGALGTRSTFNFSQF 500
501 FQQFGLPGFLVRDRATDLAKLLPVSLDSSPTPVPLRVPEKRVAMNKSVVG 550
551 TFGFKVNLQENQDALKFLVSLMELPEFLVFLQRAVSVPEDRARDLGDVME 600
601 MVFSAQACKQTSGRFFVPSCTAEGSYEDIQCYAGECWCVNSQGKEVEGSR 650
651 VSGGHPRCPTKCEKQRAQMQNLAGAQPAGSSFFVPTCTSEGYFLPVQCFN 700
701 SECYCVDAEGQVIPGTQSTIGEPKLCPSVCQLQAEQAFLGVVGVLLSNSS 750
751 MVPPISSVYIPQCSTSGQWMPVQCDGPHEQVFEWYERWNTQNSDGQELTT 800
801 ATLLMKLMSYREVASTNFSLFLQSLYDAGQQSIFPVLAQYPSLQDVPQVV 850
851 LEGATIQPGENIFLDPYIFWQILNGQLSQYPGPYSDFSMPLEHFNLRSCW 900
901 CVDEAGQELDGTRTRAGEIPACPGPCEEVKFRVLKFIKETEEIVSASNAS 950
951 SFPLGESFLVAKGIQLTSEELGLPPLYPSREAFSEKFLRGSEYAIRLAAQ 1000
1001 STLTFYQKLRASLGESNGTASLLWSGPYMPQCNTIGGWEPVQCHPGTGQC 1050
1051 WCVDGWGELIPGSLMARSSQMPQCPTSCELSRANGLISAWKQAGHQRNPG 1100
1101 PGDLFTPVCLQTGEYVRQQTSGTGAWCVDPSSGEGVPTNTNSSAQCPGLC 1150
1151 DALKSRVLSRKVGLGYTPVCEALDGGFSPVQCDLAQGSCWCVLASGEEVP 1200
1201 GTRVVGTQPACESPQCPLPFSGSDVTDGVVFCETASSSGVTTVQQCQLFC 1250
1251 RQGLRNVFSPGPLICNLESQRWVTLPLPRACQRPQLWQTMQTQAHFQLLL 1300
1301 PPGKMCSIDYSGLLQAFQVFILDELITRGFCQIQVKTFGTLVSRTVCDNS 1350
1351 SIQVGCLTAERLGVNATWKLQLEDISVGSLPNLHSIERALMGQDLLGRFA 1400
1401 NLIQSGKFQLHLDSKTFSADTILYFLNGDRFVTSPMTQLGCLEGFYRVST 1450
1451 TSQDPLGCVKCPEGSFSQDGKCTPCPAGTYQGQAGSSACIPCPRGRTTTI 1500
1501 TGAFSKTHCVTDCQRDEAGLQCDQNGQYQANQKDMDSGEVFCVDSEGQRL 1550
1551 QWLQTEAGLSESQCLMMRKFEKAPESKVIFDASSPVIVKSRVPSANSPLV 1600
1601 QCLADCADDEACSFVTVSSMSSEVSCDLYSWTRDNFACVTSDQEEDAVDS 1650
1651 LKETSFGSLRCQVKVRNSGKDSLAVYVKKGHEFTASGQKSFEPTGFQNVL 1700
1701 SGLYSSVVFSALGTNLTDTHLFCLLACDQDSCCDGFIVTQVKEGPTICGL 1750
1751 LSAPDILVCHINDWRDASDTQANGTCAGVTYDQGSRQMTMSLGGQEFLQG 1800
1801 LTLLEGTQDSFISFQQVYLWKDSDIGSRPESMGCGRGMVPKSEAPEGADM 1850
1851 ATELFSPVDITQVIVNTSHSLPSQQYWLSTHLFSAEQANLWCLSRCAQEP 1900
1901 VFCQLADIMESSSLYFTCSLYPEAQVCDNDVESNAKNCSQILPRQPTALF 1950
1951 QRKVVLNDRVKNFYTRLPFQKLSGISIRDRIPMSEKLISNGFFECERLCD 2000
2001 RDPCCTGFGFLNVSQMQGGEMTCLTLNSMGIQTCSEENGATWRILDCGSE 2050
2051 DTEVHTYPFGWYQKPAVWSDAPSFCPSAALQSLTEEKVALDSWQTLALSS 2100
2101 VIIDPSIKHFDVAHISISATRNFSLAQDFCLQECSRHQDCLVTTLQIQQG 2150
2151 VVRCVFYPDIQSCEHSLRSKTCWLLLHEEAAYIYRKSGAPLHQSDGISTP 2200
2201 SVHIDSFGQLQGGSQVVKVGTAWKQVYQFLGVPYAAPPLAENRFQAPEVL 2250
2251 NWTGSWDATKLRSSCWQPGTRTPTPPQISEDCLYLNVFVPENLVSNASVL 2300
2301 VFFHNTVEMEGSGGQLNIDGSILAAVGNLIVVTANYRLGVFGFLSSGSDE 2350
2351 VAGNWGLLDQVAALTWVQTHIGAFGGDPQRVTLAADRGGADVASIHLLIT 2400
2401 RPTRLQLFRKALLMGGSALSPAAIISPDRAQQQAAALAKEVGCPNSSVQE 2450
2451 VVSCFRQKPANILNEAQTKLLAVSGPFHYWGPVVDGQYLRELPSRRLKRP 2500
2501 LPVKVDLLIGGSQDDGLINRAKAVKQFEESQGRTNSKTAFYQALQNSLGG 2550
2551 EDSDARILAAAIWYYSLEHSTDDYASFSRALENATRDYFIICPIVNMASL 2600
2601 WARRTRGNVFMYHVPESYGHGSLELLADVQYAFGLPFYSAYQGYFSTEEQ 2650
2651 SLSLKVMQYFSNFIRSGNPNYPHEFSQKAAEFATPWPDFVPGAGGESYKE 2700
2701 LSAQLPNRQGLKKADCSFWSKYIQTLKDADGAKDAQLTKSGEEDLEVGPG 2750
2751 SEEDFSGSLEPVPKSYSK 2768

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.