SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P07942 from www.uniprot.org...

The NucPred score for your sequence is 0.68 (see score help below)

   1  MGLLQLLAFSFLALCRARVRAQEPEFSYGCAEGSCYPATGDLLIGRAQKL    50
51 SVTSTCGLHKPEPYCIVSHLQEDKKCFICNSQDPYHETLNPDSHLIENVV 100
101 TTFAPNRLKIWWQSENGVENVTIQLDLEAEFHFTHLIMTFKTFRPAAMLI 150
151 ERSSDFGKTWGVYRYFAYDCEASFPGISTGPMKKVDDIICDSRYSDIEPS 200
201 TEGEVIFRALDPAFKIEDPYSPRIQNLLKITNLRIKFVKLHTLGDNLLDS 250
251 RMEIREKYYYAVYDMVVRGNCFCYGHASECAPVDGFNEEVEGMVHGHCMC 300
301 RHNTKGLNCELCMDFYHDLPWRPAEGRNSNACKKCNCNEHSISCHFDMAV 350
351 YLATGNVSGGVCDDCQHNTMGRNCEQCKPFYYQHPERDIRDPNFCERCTC 400
401 DPAGSQNEGICDSYTDFSTGLIAGQCRCKLNVEGEHCDVCKEGFYDLSSE 450
451 DPFGCKSCACNPLGTIPGGNPCDSETGHCYCKRLVTGQHCDQCLPEHWGL 500
501 SNDLDGCRPCDCDLGGALNNSCFAESGQCSCRPHMIGRQCNEVEPGYYFA 550
551 TLDHYLYEAEEANLGPGVSIVERQYIQDRIPSWTGAGFVRVPEGAYLEFF 600
601 IDNIPYSMEYDILIRYEPQLPDHWEKAVITVQRPGRIPTSSRCGNTIPDD 650
651 DNQVVSLSPGSRYVVLPRPVCFEKGTNYTVRLELPQYTSSDSDVESPYTL 700
701 IDSLVLMPYCKSLDIFTVGGSGDGVVTNSAWETFQRYRCLENSRSVVKTP 750
751 MTDVCRNIIFSISALLHQTGLACECDPQGSLSSVCDPNGGQCQCRPNVVG 800
801 RTCNRCAPGTFGFGPSGCKPCECHLQGSVNAFCNPVTGQCHCFQGVYARQ 850
851 CDRCLPGHWGFPSCQPCQCNGHADDCDPVTGECLNCQDYTMGHNCERCLA 900
901 GYYGDPIIGSGDHCRPCPCPDGPDSGRQFARSCYQDPVTLQLACVCDPGY 950
951 IGSRCDDCASGYFGNPSEVGGSCQPCQCHNNIDTTDPEACDKETGRCLKC 1000
1001 LYHTEGEHCQFCRFGYYGDALQQDCRKCVCNYLGTVQEHCNGSDCQCDKA 1050
1051 TGQCLCLPNVIGQNCDRCAPNTWQLASGTGCDPCNCNAAHSFGPSCNEFT 1100
1101 GQCQCMPGFGGRTCSECQELFWGDPDVECRACDCDPRGIETPQCDQSTGQ 1150
1151 CVCVEGVEGPRCDKCTRGYSGVFPDCTPCHQCFALWDVIIAELTNRTHRF 1200
1201 LEKAKALKISGVIGPYRETVDSVERKVSEIKDILAQSPAAEPLKNIGNLF 1250
1251 EEAEKLIKDVTEMMAQVEVKLSDTTSQSNSTAKELDSLQTEAESLDNTVK 1300
1301 ELAEQLEFIKNSDIRGALDSITKYFQMSLEAEERVNASTTEPNSTVEQSA 1350
1351 LMRDRVEDVMMERESQFKEKQEEQARLLDELAGKLQSLDLSAAAEMTCGT 1400
1401 PPGASCSETECGGPNCRTDEGERKCGGPGCGGLVTVAHNAWQKAMDLDQD 1450
1451 VLSALAEVEQLSKMVSEAKLRADEAKQSAEDILLKTNATKEKMDKSNEEL 1500
1501 RNLIKQIRNFLTQDSADLDSIEAVANEVLKMEMPSTPQQLQNLTEDIRER 1550
1551 VESLSQVEVILQHSAADIARAEMLLEEAKRASKSATDVKVTADMVKEALE 1600
1601 EAEKAQVAAEKAIKQADEDIQGTQNLLTSIESETAASEETLFNASQRISE 1650
1651 LERNVEELKRKAAQNSGEAEYIEKVVYTVKQSAEDVKKTLDGELDEKYKK 1700
1701 VENLIAKKTEESADARRKAEMLQNEAKTLLAQANSKLQLLKDLERKYEDN 1750
1751 QRYLEDKAQELARLEGEVRSLLKDISQKVAVYSTCL 1786

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.