SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P08775 from www.uniprot.org...

The NucPred score for your sequence is 0.79 (see score help below)

   1  MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGG    50
51 RPKLGGLMDPRQGVIERTGRCQTCAGNMTECPGHFGHIELAKPVFHVGFL 100
101 VKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQPKKRLTHVYDLCKG 150
151 KNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYA 200
201 EWKHVNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIV 250
251 TVLPVPPLSVRPAVVMQGSARNQDDLTHKLADIVKINNQLRRNEQNGAAA 300
301 HVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLKQRLKGKEGRV 350
351 RGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNID 400
401 RLQELVRRGNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHM 450
451 CDGDIVIFNRQPTLHKMSMMGHRVRILPWSTFRLNLSVTTPYNADFDGDE 500
501 MNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTAVRKFTK 550
551 RDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHI 600
601 NCIRTHSTHPDDEDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAG 650
651 SLVHISYLEMGHDITRLFYSNIQTVINNWLLIEGHTIGIGDSIADSKTYQ 700
701 DIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDARD 750
751 KTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPF 800
801 GFKHRTLPHFIKDDYGPESRGFVENSYLAGLTPTEFFFHAMGGREGLIDT 850
851 AVKTAETGYIQRRLIKSMESVMVKYDATVRNSINQVVQLRYGEDGLAGES 900
901 VEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQN 950
951 ELEREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRL 1000
1001 PSDLHPIKVVEGVKELSKKLVIVNGDDPLSRQAQENATLLFNIHLRSTLC 1050
1051 SRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVGALAAQSLGEPAT 1100
1101 QMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARD 1150
1151 AERAKDILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMP 1200
1201 DFDVARISPWLLRVELDRKHMTDRKLTMEQIAEKINAGFGDDLNCIFNDD 1250
1251 NAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNMLTDMTLQG 1300
1301 IEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEK 1350
1351 DVDPVRTTSNDIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLAL 1400
1401 LCDTMTCRGHLMAITRHGVNRQDTGPLMKCSFEETVDVLMEAAAHGESDP 1450
1451 MKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAAGPTG 1500
1501 MFFGSAPSPMGGISPAMTPWNQGATPAYGAWSPSVGSGMTPGAAGFSPSA 1550
1551 ASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPSYSPTSPAY 1600
1601 EPRSPGGYTPQSPSYSPTSPSYSPTSPSYSPTSPNYSPTSPSYSPTSPSY 1650
1651 SPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYS 1700
1701 PTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPNYSP 1750
1751 TSPNYTPTSPSYSPTSPSYSPTSPNYTPTSPNYSPTSPSYSPTSPSYSPT 1800
1801 SPSYSPSSPRYTPQSPTYTPSSPSYSPSSPSYSPTSPKYTPTSPSYSPSS 1850
1851 PEYTPASPKYSPTSPKYSPTSPKYSPTSPTYSPTTPKYSPTSPTYSPTSP 1900
1901 VYTPTSPKYSPTSPTYSPTSPKYSPTSPTYSPTSPKGSTYSPTSPGYSPT 1950
1951 SPTYSLTSPAISPDDSDEEN 1970

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.