| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P10587 from www.uniprot.org...
The NucPred score for your sequence is 0.95 (see score help below)
1 MSQKPLSDDEKFLFVDKNFVNNPLAQADWSAKKLVWVPSEKHGFEAASIK 50
51 EEKGDEVTVELQENGKKVTLSKDDIQKMNPPKFSKVEDMAELTCLNEASV 100
101 LHNLRERYFSGLIYTYSGLFCVVINPYKQLPIYSEKIIDMYKGKKRHEMP 150
151 PHIYAIADTAYRSMLQDREDQSILCTGESGAGKTENTKKVIQYLAVVASS 200
201 HKGKKDTSITQGPSFSYGELEKQLLQANPILEAFGNAKTVKNDNSSRFGK 250
251 FIRINFDVTGYIVGANIETYLLEKSRAIRQAKDERTFHIFYYLIAGASEQ 300
301 MRNDLLLEGFNNYTFLSNGHVPIPAQQDDEMFQETLEAMTIMGFTEEEQT 350
351 SILRVVSSVLQLGNIVFKKERNTDQASMPDNTAAQKVCHLMGINVTDFTR 400
401 SILTPRIKVGRDVVQKAQTKEQADFAIEALAKAKFERLFRWILTRVNKAL 450
451 DKTKRQGASFLGILDIAGFEIFEINSFEQLCINYTNEKLQQLFNHTMFIL 500
501 EQEEYQREGIEWNFIDFGLDLQPCIELIERPTNPPGVLALLDEECWFPKA 550
551 TDTSFVEKLIQEQGNHAKFQKSKQLKDKTEFCILHYAGKVTYNASAWLTK 600
601 NMDPLNDNVTSLLNQSSDKFVADLWKDVDRIVGLDQMAKMTESSLPSASK 650
651 TKKGMFRTVGQLYKEQLTKLMTTLRNTNPNFVRCIIPNHEKRAGKLDAHL 700
701 VLEQLRCNGVLEGIRICRQGFPNRIVFQEFRQRYEILAANAIPKGFMDGK 750
751 QACILMIKALELDPNLYRIGQSKIFFRTGVLAHLEEERDLKITDVIIAFQ 800
801 AQCRGYLARKAFAKRQQQLTAMKVIQRNCAAYLKLRNWQWWRLFTKVKPL 850
851 LQVTRQEEEMQAKDEELQRTKERQQKAEAELKELEQKHTQLCEEKNLLQE 900
901 KLQAETELYAEAEEMRVRLAAKKQELEEILHEMEARIEEEEERSQQLQAE 950
951 KKKMQQQMLDLEEQLEEEEAARQKLQLEKVTADGKIKKMEDDILIMEDQN 1000
1001 NKLTKERKLLEERVSDLTTNLAEEEEKAKNLTKLKNKHESMISELEVRLK 1050
1051 KEEKSRQELEKIKRKLEGESSDLHEQIAELQAQIAELKAQLAKKEEELQA 1100
1101 ALARLEDETSQKNNALKKIRELESHISDLQEDLESEKAARNKAEKQKRDL 1150
1151 SEELEALKTELEDTLDTTATQQELRAKREQEVTVLKRALEEETRTHEAQV 1200
1201 QEMRQKHTQAVEELTEQLEQFKRAKANLDKTKQTLEKDNADLANEIRSLS 1250
1251 QAKQDVEHKKKKLEVQLQDLQSKYSDGERVRTELNEKVHKLQIEVENVTS 1300
1301 LLNEAESKNIKLTKDVATLGSQLQDTQELLQEETRQKLNVTTKLRQLEDD 1350
1351 KNSLQEQLDEEVEAKQNLERHISTLTIQLSDSKKKLQEFTATVETMEEGK 1400
1401 KKLQREIESLTQQFEEKAASYDKLEKTKNRLQQELDDLVVDLDNQRQLVS 1450
1451 NLEKKQKKFDQMLAEEKNISSKYADERDRAEAEAREKETKALSLARALEE 1500
1501 ALEAKEELERTNKMLKAEMEDLVSSKDDVGKNVHELEKSKRTLEQQVEEM 1550
1551 KTQLEELEDELQAAEDAKLRLEVNMQAMKSQFERDLQARDEQNEEKRRQL 1600
1601 LKQLHEHETELEDERKQRALAAAAKKKLEVDVKDLESQVDSANKAREEAI 1650
1651 KQLRKLQAQMKDYQRDLDDARAAREEIFATARENEKKAKNLEAELIQLQE 1700
1701 DLAAAERARKQADLEKEEMAEELASANSGRTSLQDEKRRLEARIAQLEEE 1750
1751 LDEEHSNIETMSDRMRKAVQQAEQLNNELATERATAQKNENARQQLERQN 1800
1801 KELRSKLQEMEGAVKSKFKSTIAALEAKIASLEEQLEQEAREKQAAAKTL 1850
1851 RQKDKKLKDALLQVEDERKQAEQYKDQAEKGNLRLKQLKRQLEEAEEESQ 1900
1901 RINANRRKLQRELDEATESNDALGREVAALKSKLRRGNEPVSFAPPRRSG 1950
1951 GRRVIENATDGGEEEIDGRDGDFNGKASE 1979
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.