SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P10686 from www.uniprot.org...

The NucPred score for your sequence is 0.90 (see score help below)

   1  MAGVGTPCANGCGPSAPSEAEVLHLCRSLEVGTVMTLFYSKKSQRPERKT    50
51 FQVKLETRQITWSRGADKIEGSIDIREIKEIRPGKTSRDFDRYQEDPAFR 100
101 PDQSHCFVILYGMEFRLKTLSLQATSEDEVNMWIKGLTWLMEDTLQAATP 150
151 LQIERWLRKQFYSVDRNREDRISAKDLKNMLSQVNYRVPNMRFLRERLTD 200
201 FEQRSGDITYGQFAQLYRSLMYSAQKTMDLPFLETNTLRTGERPELCQVS 250
251 LSEFQQFLLEYQGELWAVDRLQVQEFMLSFLRDPLREIEEPYFFLDELVT 300
301 FLFSKENSVWNSQLDAVCPETMNNPLSHYWISSSHNTYLTGDQFSSESSL 350
351 EAYARCLRMGCRCIELDCWDGPDGMPVIYHGHTLTTKIKFSDVLHTIKEH 400
401 AFVASEYPVILSIEDHCSIAQQRNMAQHFRKVLGDTLLTKPVDIAADGLP 450
451 SPNQLKRKILIKHKKLAEGSAYEEVPTSVMYSENDISNSIKNGILYLEDP 500
501 VNHEWYPHYFVLTSSKIYYSEETSSDQGNEDEEEPKEASGSTELHSSEKW 550
551 FHGKLGAGRDGRHIAERLLTEYCIETGAPDGSFLVRESETFVGDYTLSFW 600
601 RNGKVQHCRIHSRQDAGTPKFFLTDNLVFDSLYDLITHYQQVPLRCNEFE 650
651 MRLSEPVPQTNAHESKEWYHASLTRAQAEHMLMRVPRDGAFLVRKRNEPN 700
701 SYAISFRAEGKIKHCRVQQEGQTVMLGNSEFDSLVDLISYYEKHPLYRKM 750
751 KLRYPINEEALEKIGTAEPDYGALYEGRNPGFYVEANPMPTFKCAVKALF 800
801 DYKAQREDELTFTKSAIIQNVEKQDGGWWRGDYGGKKQLWFPSNYVEEMI 850
851 NPAILEPEREHLDENSPLGDLLRGVLDVPACQIAIRPEGKNNRLFVFSIS 900
901 MPSVAQWSLDVAADSQEELQDWVKKIREVAQTADARLTEGKMMERRKKIA 950
951 LELSELVVYCRPVPFDEEKIGTERACYRDMSSFPETKAEKYVNKAKGKKF 1000
1001 LQYNRLQLSRIYPKGQRLDSSNYDPLPMWICGSQLVALNFQTPDKPMQMN 1050
1051 QALFMAGGHCGYVLQPSTMRDEAFDPFDKSSLRGLEPCVICIEVLGARHL 1100
1101 PKNGRGIVCPFVEIEVAGAEYDSTKQKTEFVVDNGLNPVWPAKPFHFQIS 1150
1151 NPEFAFLRFVVYEEDMFSDQNFLAQATFPVKGLKTGYRAVPLKNNYSEDL 1200
1201 ELASLLIKIDIFPAKENGDLSPFSGTSLRERASDASSQLFHVRAREGSFE 1250
1251 ARYQQPFEDFRISQEHLADHFDSRERRAPRRTRVNGDNRL 1290

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.