 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P10964 from www.uniprot.org...
The NucPred score for your sequence is 0.71 (see score help below)
1 MDISKPVGSEITSVDFGILTAKEIRNLSAKQITNPTVLDNLGHPVSGGLY 50
51 DLALGAFLRNLCSTCGLDEKFCPGHQGHIELPVPCYNPLFFNQLYIYLRA 100
101 SCLFCHHFRLKSVEVHRYACKLRLLQYGLIDESYKLDEITLGSLNSSMYT 150
151 DDEAIEDNEDEMDGEGSKQSKDISSTLLNELKSKRSEYVDMAIAKALSDG 200
201 RTTERGSFTATVNDERKKLVHEFHKKLLSRGKCDNCGMFSPKFRKDGFTK 250
251 IFETALNEKQITNNRVKGFIRQDMIKKQKQAKKLDGSNEASANDEESFDV 300
301 GRNPTTRPKTGSTYILSTEVKNILDTVFRKEQCVLQYVFHSRPNLSRKLV 350
351 KADSFFMDVLVVPPTRFRLPSKLGEEVHENSQNQLLSKVLTTSLLIRDLN 400
401 DDLSKLQKDKVSLEDRRVIFSRLMNAFVTIQNDVNAFIDSTKAQGRTSGK 450
451 VPIPGVKQALEKKEGLFRKHMMGKRVNYAARSVISPDPNIETNEIGVPPV 500
501 FAVKLTYPEPVTAYNIAELRQAVINGPDKWPGATQIQNEDGSLVSLIGMS 550
551 VEQRKALANQLLTPSSNVSTHTLNKKVYRHIKNRDVVLMNRQPTLHKASM 600
601 MGHKVRVLPNEKTLRLHYANTGAYNADFDGDEMNMHFPQNENARAEALNL 650
651 ANTDSQYLTPTSGSPVRGLIQDHISAGVWLTSKDSFFTREQYQQYIYGCI 700
701 RPEDGHTTRSKIVTLPPTIFKPYPLWTGKQIITTVLLNVTPPDMPGINLI 750
751 SKNKIKNEYWGKGSLENEVLFKDGALLCGILDKSQYGASKYGIVHSLHEV 800
801 YGPEVAAKVLSVLGRLFTNYITATAFTCGMDDLRLTAEGNKWRTDILKTS 850
851 VDTGREAAAEVTNLDKDTPADDPELLKRLQEILRDNNKSGILDAVTSSKV 900
901 NAITSQVVSKCVPDGTMKKFPCNSMQAMALSGAKGSNVNVSQIMCLLGQQ 950
951 ALEGRRVPVMVSGKTLPSFKPYETDAMAGGYVKGRFYSGIKPQEYYFHCM 1000
1001 AGREGLIDTAVKTSRSGYLQRCLTKQLEGVHVSYDNSIRDADGTLVQFMY 1050
1051 GGDAIDITKESHMTQFEFCLDNYYALLKKYNPSALIEHLDVESALKYSKK 1100
1101 TLKYRKKHSKEPHYKQSVKYDPVLAKYNPAKYLGSVSENFQDKLESFLDK 1150
1151 NSKLFKSSDGVNEKKFRALMQLKYMRSLINPGEAVGIIASQSVGEPSTQM 1200
1201 TLNTFHFAGHGAANVTLGIPRLREIVMTASAAIKTPQMTLPIWNDVSDEQ 1250
1251 ADTFCKSISKVLLSEVIDKVIVTETTGTSNTAGGNAARSYVIHMRFFDNN 1300
1301 EYSEEYDVSKEELQNVISNQFIHLLEAAIVKEIKKQKRTTGPDIGVAVPR 1350
1351 LQTDVANSSSNSKRLEEDNDEEQSHKKTKQAVSYDEPDEDEIETMREAEK 1400
1401 SSDEEGIDSDKESDSDSEDEDVDMNEQINKSIVEANNNMNKVQRDRQSAI 1450
1451 ISHHRFITKYNFDDESGKWCEFKLELAADTEKLLMVNIVEEICRKSIIRQ 1500
1501 IPHIDRCVHPEPENGKRVLVTEGVNFQAMWDQEAFIDVDGITSNDVAAVL 1550
1551 KTYGVEAARNTIVNEINNVFSRYAISVSFRHLDLIADMMTRQGTYLAFNR 1600
1601 QGMETSTSSFMKMSYETTCQFLTKAVLDNEREQLDSPSARIVVGKLNNVG 1650
1651 TGSFDVLAKVPNAA 1664
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.