 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P11047 from www.uniprot.org...
The NucPred score for your sequence is 0.65 (see score help below)
1 MRGSHRAAPALRPRGRLWPVLAVLAAAAAAGCAQAAMDECTDEGGRPQRC 50
51 MPEFVNAAFNVTVVATNTCGTPPEEYCVQTGVTGVTKSCHLCDAGQPHLQ 100
101 HGAAFLTDYNNQADTTWWQSQTMLAGVQYPSSINLTLHLGKAFDITYVRL 150
151 KFHTSRPESFAIYKRTREDGPWIPYQYYSGSCENTYSKANRGFIRTGGDE 200
201 QQALCTDEFSDISPLTGGNVAFSTLEGRPSAYNFDNSPVLQEWVTATDIR 250
251 VTLNRLNTFGDEVFNDPKVLKSYYYAISDFAVGGRCKCNGHASECMKNEF 300
301 DKLVCNCKHNTYGVDCEKCLPFFNDRPWRRATAESASECLPCDCNGRSQE 350
351 CYFDPELYRSTGHGGHCTNCQDNTDGAHCERCRENFFRLGNNEACSSCHC 400
401 SPVGSLSTQCDSYGRCSCKPGVMGDKCDRCQPGFHSLTEAGCRPCSCDPS 450
451 GSIDECNIETGRCVCKDNVEGFNCERCKPGFFNLESSNPRGCTPCFCFGH 500
501 SSVCTNAVGYSVYSISSTFQIDEDGWRAEQRDGSEASLEWSSERQDIAVI 550
551 SDSYFPRYFIAPAKFLGKQVLSYGQNLSFSFRVDRRDTRLSAEDLVLEGA 600
601 GLRVSVPLIAQGNSYPSETTVKYVFRLHEATDYPWRPALTPFEFQKLLNN 650
651 LTSIKIRGTYSERSAGYLDDVTLASARPGPGVPATWVESCTCPVGYGGQF 700
701 CEMCLSGYRRETPNLGPYSPCVLCACNGHSETCDPETGVCNCRDNTAGPH 750
751 CEKCSDGYYGDSTAGTSSDCQPCPCPGGSSCAVVPKTKEVVCTNCPTGTT 800
801 GKRCELCDDGYFGDPLGRNGPVRLCRLCQCSDNIDPNAVGNCNRLTGECL 850
851 KCIYNTAGFYCDRCKDGFFGNPLAPNPADKCKACNCNLYGTMKQQSSCNP 900
901 VTGQCECLPHVTGQDCGACDPGFYNLQSGQGCERCDCHALGSTNGQCDIR 950
951 TGQCECQPGITGQHCERCEVNHFGFGPEGCKPCDCHPEGSLSLQCKDDGR 1000
1001 CECREGFVGNRCDQCEENYFYNRSWPGCQECPACYRLVKDKVADHRVKLQ 1050
1051 ELESLIANLGTGDEMVTDQAFEDRLKEAEREVMDLLREAQDVKDVDQNLM 1100
1101 DRLQRVNNTLSSQISRLQNIRNTIEETGNLAEQARAHVENTERLIEIASR 1150
1151 ELEKAKVAAANVSVTQPESTGDPNNMTLLAEEARKLAERHKQEADDIVRV 1200
1201 AKTANDTSTEAYNLLLRTLAGENQTAFEIEELNRKYEQAKNISQDLEKQA 1250
1251 ARVHEEAKRAGDKAVEIYASVAQLSPLDSETLENEANNIKMEAENLEQLI 1300
1301 DQKLKDYEDLREDMRGKELEVKNLLEKGKTEQQTADQLLARADAAKALAE 1350
1351 EAAKKGRDTLQEANDILNNLKDFDRRVNDNKTAAEEALRKIPAINQTITE 1400
1401 ANEKTREAQQALGSAAADATEAKNKAHEAERIASAVQKNATSTKAEAERT 1450
1451 FAEVTDLDNEVNNMLKQLQEAEKELKRKQDDADQDMMMAGMASQAAQEAE 1500
1501 INARKAKNSVTSLLSIINDLLEQLGQLDTVDLNKLNEIEGTLNKAKDEMK 1550
1551 VSDLDRKVSDLENEAKKQEAAIMDYNRDIEEIMKDIRNLEDIRKTLPSGC 1600
1601 FNTPSIEKP 1609
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.