SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P11881 from www.uniprot.org...

The NucPred score for your sequence is 0.77 (see score help below)

   1  MSDKMSSFLHIGDICSLYAEGSTNGFISTLGLVDDRCVVQPEAGDLNNPP    50
51 KKFRDCLFKLCPMNRYSAQKQFWKAAKPGANSTTDAVLLNKLHHAADLEK 100
101 KQNETENRKLLGTVIQYGNVIQLLHLKSNKYLTVNKRLPALLEKNAMRVT 150
151 LDEAGNEGSWFYIQPFYKLRSIGDSVVIGDKVVLNPVNAGQPLHASSHQL 200
201 VDNPGCNEVNSVNCNTSWKIVLFMKWSDNKDDILKGGDVVRLFHAEQEKF 250
251 LTCDEHRKKQHVFLRTTGRQSATSATSSKALWEVEVVQHDPCRGGAGYWN 300
301 SLFRFKHLATGHYLAAEVDPDFEEECLEFQPSVDPDQDASRSRLRNAQEK 350
351 MVYSLVSVPEGNDISSIFELDPTTLRGGDSLVPRNSYVRLRHLCTNTWVH 400
401 STNIPIDKEEEKPVMLKIGTSPLKEDKEAFAIVPVSPAEVRDLDFANDAS 450
451 KVLGSIAGKLEKGTITQNERRSVTKLLEDLVYFVTGGTNSGQDVLEVVFS 500
501 KPNRERQKLMREQNILKQIFKLLQAPFTDCGDGPMLRLEELGDQRHAPFR 550
551 HICRLCYRVLRHSQQDYRKNQEYIAKQFGFMQKQIGYDVLAEDTITALLH 600
601 NNRKLLEKHITAAEIDTFVSLVRKNREPRFLDYLSDLCVSMNKSIPVTQE 650
651 LICKAVLNPTNADILIETKLVLSRFEFEGVSTGENALEAGEDEEEVWLFW 700
701 RDSNKEIRSKSVRELAQDAKEGQKEDRDILSYYRYQLNLFARMCLDRQYL 750
751 AINEISGQLDVDLILRCMSDENLPYDLRASFCRLMLHMHVDRDPQEQVTP 800
801 VKYARLWSEIPSEIAIDDYDSSGTSKDEIKERFAQTMEFVEEYLRDVVCQ 850
851 RFPFSDKEKNKLTFEVVNLARNLIYFGFYNFSDLLRLTKILLAILDCVHV 900
901 TTIFPISKMTKGEENKGSNVMRSIHGVGELMTQVVLRGGGFLPMTPMAAA 950
951 PEGNVKQAEPEKEDIMVMDTKLKIIEILQFILNVRLDYRISCLLCIFKRE 1000
1001 FDESNSQSSETSSGNSSQEGPSNVPGALDFEHIEEQAEGIFGGSEENTPL 1050
1051 DLDDHGGRTFLRVLLHLTMHDYPPLVSGALQLLFRHFSQRQEVLQAFKQV 1100
1101 QLLVTSQDVDNYKQIKQDLDQLRSIVEKSELWVYKGQGPDEPMDGASGEN 1150
1151 EHKKTEEGTSKPLKHESTSSYNYRVVKEILIRLSKLCVQESASVRKSRKQ 1200
1201 QQRLLRNMGAHAVVLELLQIPYEKAEDTKMQEIMRLAHEFLQNFCAGNQQ 1250
1251 NQALLHKHINLFLNPGILEAVTMQHIFMNNFQLCSEINERVVQHFVHCIE 1300
1301 THGRNVQYIKFLQTIVKAEGKFIKKCQDMVMAELVNSGEDVLVFYNDRAS 1350
1351 FQTLIQMMRSERDRMDENSPLMYHIHLVELLAVCTEGKNVYTEIKCNSLL 1400
1401 PLDDIVRVVTHEDCIPEVKIAYINFLNHCYVDTEVEMKEIYTSNHMWKLF 1450
1451 ENFLVDICRACNNTSDRKHADSILEKYVTEIVMSIVTTFFSSPFSDQSTT 1500
1501 LQTRQPVFVQLLQGVFRVYHCNWLMPSQKASVESCIRVLSDVAKSRAIAI 1550
1551 PVDLDSQVNNLFLKSHNIVQKTALNWRLSARNAARRDSVLAASRDYRNII 1600
1601 ERLQDIVSALEDRLRPLVQAELSVLVDVLHRPELLFPENTDARRKCESGG 1650
1651 FICKLIKHTKQLLEENEEKLCIKVLQTLREMMTKDRGYGEKQISIDESEN 1700
1701 AELPQAPEAENSTEQELEPSPPLRQLEDHKRGEALRQILVNRYYGNIRPS 1750
1751 GRRESLTSFGNGPLSPGGPSKPGGGGGGPGSSSTSRGEMSLAEVQCHLDK 1800
1801 EGASNLVIDLIMNASSDRVFHESILLAIALLEGGNTTIQHSFFCRLTEDK 1850
1851 KSEKFFKVFYDRMKVAQQEIKATVTVNTSDLGNKKKDDEVDRDAPSRKKA 1900
1901 KEPTTQITEEVRDQLLEASAATRKAFTTFRREADPDDHYQSGEGTQATTD 1950
1951 KAKDDLEMSAVITIMQPILRFLQLLCENHNRDLQNFLRCQNNKTNYNLVC 2000
2001 ETLQFLDCICGSTTGGLGLLGLYINEKNVALINQTLESLTEYCQGPCHEN 2050
2051 QNCIATHESNGIDIITALILNDINPLGKKRMDLVLELKNNASKLLLAIME 2100
2101 SRHDSENAERILYNMRPKELVEVIKKAYMQGEVEFEDGENGEDGAASPRN 2150
2151 VGHNIYILAHQLARHNKELQTMLKPGGQVDGDEALEFYAKHTAQIEIVRL 2200
2201 DRTMEQIVFPVPSICEFLTKESKLRIYYTTERDEQGSKINDFFLRSEDLF 2250
2251 NEMNWQKKLRAQPVLYWCARNMSFWSSISFNLAVLMNLLVAFFYPFKGVR 2300
2301 GGTLEPHWSGLLWTAMLISLAIVIALPKPHGIRALIASTILRLIFSVGLQ 2350
2351 PTLFLLGAFNVCNKIIFLMSFVGNCGTFTRGYRAMVLDVEFLYHLLYLLI 2400
2401 CAMGLFVHEFFYSLLLFDLVYREETLLNVIKSVTRNGRSIILTAVLALIL 2450
2451 VYLFSIVGYLFFKDDFILEVDRLPNETAVPETGESLANDFLYSDVCRVET 2500
2501 GENCTSPAPKEELLPAEETEQDKEHTCETLLMCIVTVLSHGLRSGGGVGD 2550
2551 VLRKPSKEEPLFAARVIYDLLFFFMVIIIVLNLIFGVIIDTFADLRSEKQ 2600
2601 KKEEILKTTCFICGLERDKFDNKTVTFEEHIKEEHNMWHYLCFIVLVKVK 2650
2651 DSTEYTGPESYVAEMIRERNLDWFPRMRAMSLVSSDSEGEQNELRNLQEK 2700
2701 LESTMKLVTNLSGQLSELKDQMTEQRKQKQRIGLLGHPPHMNVNPQQPA 2749

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.