| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P12844 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MSGNPDAFENDPGFPFLGISREARAATAARPFDSKKNCWIPDPEDGFVAA 50
51 EIQSTTGEQVTVVTVKGNQITVKKDQCQEMNPPKFDKTEDMANLTFLNEA 100
101 SVLGNLKDRYKDLMIYTYSGLFCVVINPYKRLPIYSESVIKHFMGKRRNE 150
151 MPPHLFAVSDEAYRNMVQDKENQSMLITGESGAGKTENTKKVISYFAIVG 200
201 ATQAASGKEAKDGKKGGTLEEQIVQTNPVLEAFGNAKTVRNNNSSRFGKF 250
251 IRTHFSGSGKLAGGDIEHYLLEKSRVVRQAPGERCYHIFYQIMSGNDPSL 300
301 RGKLKLSNDITYYHFCSQAELTIEGMDDKEEMRLTQEAFDIMGFEDNETM 350
351 DLYRSTAGIMHMGEMKFKQRPREEQAEPDGEEDALNAAAMLGIQAEEFLK 400
401 ALTKPRVRVGTEWVNKGQNLEQVNWAVSGLAKAIYARMFKWIITRCNKTL 450
451 DAKEIERKHFIGVLDIAGFEIFDLNSFEQLWINFVNERLQQFFNHHMFVL 500
501 EQEEYKREGIAWTFIDFGLDLQACIELIEKPLGIISILDEECIVPKATDM 550
551 TYAQKLLDQHLGKHPNFQKPKPPKGKQGDAHFAIVHYAGTVRYNATNFLE 600
601 KNKDPLNDTAVALLKHSTDNSLMLDIWQDYQTQEEAAEAAKAGQTAGGKR 650
651 GKSSSFATVSMIYRESLNNLMNMLYQTHPHFIRCIIPNEKKASGVIDSAL 700
701 VLNQLTCNGVLEGIRICRKGFPNRMLYPDFKHRYAILAADAAKESDPKKA 750
751 SVGILDKISVDGNLTDEEFKVGETKIFFKAGVLAKLEDLRDEILSRIVTM 800
801 FQSRIRSYLAKAEVRRRYEQQTGLLVVQRNVRAWCTLRTWEWFKLFGKVK 850
851 PMLKAGKEQEAMGELAVKIQKLEEAVQRGEIARSQLESQVADLVEEKNAL 900
901 FLSLETEKANLADAEERNEKLNQLKATLESKLSDITGQLEDMQERNEDLA 950
951 RQKKKTDQELSDTKKHVQDLELSLRKAEQEKQSRDHNIRSLQDEMANQDE 1000
1001 AVAKLNKEKKHQEESNRKLNEDLQSEEDKVNHLEKIRNKLEQQMDELEEN 1050
1051 IDREKRSRGDIEKAKRKVEGDLKVAQENIDEITKQKHDVETTLKRKEEDL 1100
1101 HHTNAKLAENNSIIAKLQRLIKELTARNAELEEELEAERNSRQKSDRSRS 1150
1151 EAERELEELTERLEQQGGATAAQLEANKKREAEIAKLRREKEEDSLNHET 1200
1201 AISSLRKRHGDSVAELTEQLETLQKLKAKSEAEKSKLQRDLEESQHATDS 1250
1251 EVRSRQDLEKALKTIEVQYSELQTKADEQSRQLQDFAALKNRLNNENSDL 1300
1301 NRSLEEMDNQLNSLHRLKSTLQSQLDETRRNYDEESRERQALAATAKNLE 1350
1351 HENTILREHLDEEAESKADLTRQISKLNAEIQQWKARFDSEGLNKLEEIE 1400
1401 AAKKALQLKVQELTDTNEGLFAKIASQEKVRFKLMQDLDDAQSDVEKAAA 1450
1451 QVAFYEKHRRQFESIIAEWKKKTDDLSSELDAAQRDNRQLSTDLFKAKTA 1500
1501 NDELAEYLDSTRRENKSLAQEVKDLTDQLGEGGRSVAELQKIVRKLEVEK 1550
1551 EELQKALDEAEAALEAEEAKVLRAQIEVSQIRSEIEKRIQEKEEEFENTR 1600
1601 RNHQRALESMQATLEAETKQKEEALRIKKKLESDINDLEIALDHANRAYA 1650
1651 DAQKTIKKYMETVQELQFQIEEEQRQKDEIREQFLASEKRNAILQSEKDE 1700
1701 LAQQAEAAERARRNAEAECIELREQNNDLNAHVSALTGQRRKLEGELLAA 1750
1751 HAELEEIANELKNAVEQGQKASADAARLAEELRQEQEHSMHIERIRKGLE 1800
1801 LQIKEMQIRLDDAENAALKGGKKIIAQLEARIRAIEQELDGEQRRHQDTE 1850
1851 KNWRKAERRVKEVEFQVVEEKKNEERLTELVDKLQCKLKIFKRQVEEAEE 1900
1901 VAASNLNKYKVLTAQFEQAEERADIAENALSKMRNKIRASASMAPPDGFP 1950
1951 MVPSASSALIRSSSNARFL 1969
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.