| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P13382 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MSSKSEKLEKLRKLQAARNGTSIDDYEGDESDGDRIYDEIDEKEYRARKR 50
51 QELLHDDFVVDDDGVGYVDRGVEEDWREVDNSSSDEDTGNLASKDSKRKK 100
101 NIKREKDHQITDMLRTQHSKSTLLAHAKKSQKKSIPIDNFDDILGEFESG 150
151 EVEKPNILLPSKLRENLNSSPTSEFKSSIKRVNGNDESSHDAGISKKVKI 200
201 DPDSSTDKYLEIESSPLKLQSRKLRYANDVQDLLDDVENSPVVATKRQNV 250
251 LQDTLLANPPSAQSLADEEDDEDSDEDIILKRRTMRSVTTTRRVNIDSRS 300
301 NPSTSPFVTAPGTPIGIKGLTPSKSLQSNTDVATLAVNVKKEDVVDPETD 350
351 TFQMFWLDYCEVNNTLILFGKVKLKDDNCVSAMVQINGLCRELFFLPREG 400
401 KTPTDIHEEIIPLLMDKYGLDNIRAKPQKMKYSFELPDIPSESDYLKVLL 450
451 PYQTPKSSRDTIPSDLSSDTFYHVFGGNSNIFESFVIQNRIMGPCWLDIK 500
501 GADFNSIRNASHCAVEVSVDKPQNITPTTTKTMPNLRCLSLSIQTLMNPK 550
551 ENKQEIVSITLSAYRNISLDSPIPENIKPDDLCTLVRPPQSTSFPLGLAA 600
601 LAKQKLPGRVRLFNNEKAMLSCFCAMLKVEDPDVIIGHRLQNVYLDVLAH 650
651 RMHDLNIPTFSSIGRRLRRTWPEKFGRGNSNMNHFFISDICSGRLICDIA 700
701 NEMGQSLTPKCQSWDLSEMYQVTCEKEHKPLDIDYQNPQYQNDVNSMTMA 750
751 LQENITNCMISAEVSYRIQLLTLTKQLTNLAGNAWAQTLGGTRAGRNEYI 800
801 LLHEFSRNGFIVPDKEGNRSRAQKQRQNEENADAPVNSKKAKYQGGLVFE 850
851 PEKGLHKNYVLVMDFNSLYPSIIQEFNICFTTVDRNKEDIDELPSVPPSE 900
901 VDQGVLPRLLANLVDRRREVKKVMKTETDPHKRVQCDIRQQALKLTANSM 950
951 YGCLGYVNSRFYAKPLAMLVTNKGREILMNTRQLAESMNLLVVYGDTDSV 1000
1001 MIDTGCDNYADAIKIGLGFKRLVNERYRLLEIDIDNVFKKLLLHAKKKYA 1050
1051 ALTVNLDKNGNGTTVLEVKGLDMKRREFCPLSRDVSIHVLNTILSDKDPE 1100
1101 EALQEVYDYLEDIRIKVETNNIRIDKYKINMKLSKDPKAYPGGKNMPAVQ 1150
1151 VALRMRKAGRVVKAGSVITFVITKQDEIDNAADTPALSVAERAHALNEVM 1200
1201 IKSNNLIPDPQYYLEKQIFAPVERLLERIDSFNVVRLSEALGLDSKKYFR 1250
1251 REGGNNNGEDINNLQPLETTITDVERFKDTVTLELSCPSCDKRFPFGGIV 1300
1301 SSNYYRVSYNGLQCKHCEQLFTPLQLTSQIEHSIRAHISLYYAGWLQCDD 1350
1351 STCGIVTRQVSVFGKRCLNDGCTGVMRYKYSDKQLYNQLLYFDSLFDCEK 1400
1401 NKKQELKPIYLPDDLDYPKEQLTESSIKALTEQNRELMETGRSVVQKYLN 1450
1451 DCGRRYVDMTSIFDFMLN 1468
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.