| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P13533 from www.uniprot.org...
The NucPred score for your sequence is 0.92 (see score help below)
1 MTDAQMADFGAAAQYLRKSEKERLEAQTRPFDIRTECFVPDDKEEFVKAK 50
51 ILSREGGKVIAETENGKTVTVKEDQVLQQNPPKFDKIEDMAMLTFLHEPA 100
101 VLFNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNAEVVAAYRGKKRSEA 150
151 PPHIFSISDNAYQYMLTDRENQSILITGESGAGKTVNTKRVIQYFASIAA 200
201 IGDRGKKDNANANKGTLEDQIIQANPALEAFGNAKTVRNDNSSRFGKFIR 250
251 IHFGATGKLASADIETYLLEKSRVIFQLKAERNYHIFYQILSNKKPELLD 300
301 MLLVTNNPYDYAFVSQGEVSVASIDDSEELMATDSAFDVLGFTSEEKAGV 350
351 YKLTGAIMHYGNMKFKQKQREEQAEPDGTEDADKSAYLMGLNSADLLKGL 400
401 CHPRVKVGNEYVTKGQSVQQVYYSIGALAKAVYEKMFNWMVTRINATLET 450
451 KQPRQYFIGVLDIAGFEIFDFNSFEQLCINFTNEKLQQFFNHHMFVLEQE 500
501 EYKKEGIEWTFIDFGMDLQACIDLIEKPMGIMSILEEECMFPKATDMTFK 550
551 AKLYDNHLGKSNNFQKPRNIKGKQEAHFSLIHYAGTVDYNILGWLEKNKD 600
601 PLNETVVALYQKSSLKLMATLFSSYATADTGDSGKSKGGKKKGSSFQTVS 650
651 ALHRENLNKLMTNLRTTHPHFVRCIIPNERKAPGVMDNPLVMHQLRCNGV 700
701 LEGIRICRKGFPNRILYGDFRQRYRILNPVAIPEGQFIDSRKGTEKLLSS 750
751 LDIDHNQYKFGHTKVFFKAGLLGLLEEMRDERLSRIITRMQAQARGQLMR 800
801 IEFKKIVERRDALLVIQWNIRAFMGVKNWPWMKLYFKIKPLLKSAETEKE 850
851 MATMKEEFGRIKETLEKSEARRKELEEKMVSLLQEKNDLQLQVQAEQDNL 900
901 NDAEERCDQLIKNKIQLEAKVKEMNERLEDEEEMNAELTAKKRKLEDECS 950
951 ELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDEIIAKLTKEKKA 1000
1001 LQEAHQQALDDLQVEEDKVNSLSKSKVKLEQQVDDLEGSLEQEKKVRMDL 1050
1051 ERAKRKLEGDLKLTQESIMDLENDKLQLEEKLKKKEFDINQQNSKIEDEQ 1100
1101 VLALQLQKKLKENQARIEELEEELEAERTARAKVEKLRSDLSRELEEISE 1150
1151 RLEEAGGATSVQIEMNKKREAEFQKMRRDLEEATLQHEATAAALRKKHAD 1200
1201 SVAELGEQIDNLQRVKQKLEKEKSEFKLELDDVTSNMEQIIKAKANLEKV 1250
1251 SRTLEDQANEYRVKLEEAQRSLNDFTTQRAKLQTENGELARQLEEKEALI 1300
1301 SQLTRGKLSYTQQMEDLKRQLEEEGKAKNALAHALQSARHDCDLLREQYE 1350
1351 EETEAKAELQRVLSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQ 1400
1401 DAEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRN 1450
1451 FDKILAEWKQKYEESQSELESSQKEARSLSTELFKLKNAYEESLEHLETF 1500
1501 KRENKNLQEEISDLTEQLGEGGKNVHELEKVRKQLEVEKLELQSALEEAE 1550
1551 ASLEHEEGKILRAQLEFNQIKAEIERKLAEKDEEMEQAKRNHQRVVDSLQ 1600
1601 TSLDAETRSRNEVLRVKKKMEGDLNEMEIQLSHANRMAAEAQKQVKSLQS 1650
1651 LLKDTQIQLDDAVRANDDLKENIAIVERRNNLLQAELEELRAVVEQTERS 1700
1701 RKLAEQELIETSERVQLLHSQNTSLINQKKKMESDLTQLQSEVEEAVQEC 1750
1751 RNAEEKAKKAITDAAMMAEELKKEQDTSAHLERMKKNMEQTIKDLQHRLD 1800
1801 EAEQIALKGGKKQLQKLEARVRELEGELEAEQKRNAESVKGMRKSERRIK 1850
1851 ELTYQTEEDKKNLLRLQDLVDKLQLKVKAYKRQAEEAEEQANTNLSKFRK 1900
1901 VQHELDEAEERADIAESQVNKLRAKSRDIGAKQKMHDEE 1939
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.