SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P13568 from www.uniprot.org...

The NucPred score for your sequence is 0.68 (see score help below)

   1  MGKEQKEKKDGNLSIKEEVEKELNKKSTAELFRKIKNEKISFFLPFKCLP    50
51 AQHRKLLFISFVCAVLSGGTLPFFISVFGVILKNMNLGDDINPIILSLVS 100
101 IGLVQFILSMISSYCMDVITSKILKTLKLEYLRSVFYQDGQFHDNNPGSK 150
151 LRSDLDFYLEQVSSGIGTKFITIFTYASSFLGLYIWSLIKNARLTLCITC 200
201 VFPLIYVCGVICNKKVKLNKKTSLLYNNNTMSIIEEALMGIRTVASYCGE 250
251 KTILNKFNLSETFYSKYILKANFVEALHIGLINGLILVSYAFGFWYGTRI 300
301 IINSATNQYPNNDFNGASVISILLGVLISMFMLTIILPNITEYMKALEAT 350
351 NSLYEIINRKPLVENNDDGETLPNIKKIEFKNVRFHYDTRKDVEIYKDLS 400
401 FTLKEGKTYAFVGESGCGKSTILKLIERLYDPTEGDIIVNDSHNLKDINL 450
451 KWWRSKIGVVSQDPLLFSNSIKNNIKYSLYSLKDLEAMENYYEENTNDTY 500
501 ENKNFSLISNSMTSNELLEMKKEYQTIKDSDVVDVSKKVLIHDFVSSLPD 550
551 KYDTLVGSNASKLSGGQKQRISIARAIMRNPKILILDEATSSLDNKSEYL 600
601 VQKTINNLKGNENRITIIIAHRLSTIRYANTIFVLSNRERSDNNNNNNND 650
651 DNNNNNNNNNNKINNEGSYIIEQGTHDSLMKNKNGIYHLMINNQKISSNK 700
701 SSNNGNDNGSDNKSSAYKDSDTGNDADNMNSLSIHENENISNNRNCKNTA 750
751 ENEKEEKVPFFKRMFRRKKKAPNNLRIIYKEIFSYKKDVTIIFFSILVAG 800
801 GLYPVFALLYARYVSTLFDFANLEYNSNKYSIYILLIAIAMFISETLKNY 850
851 YNNKIGEKVEKTMKRRLFENILYQEMSFFDQDKNTPGVLSAHINRDVHLL 900
901 KTGLVNNIVIFSHFIMLFLVSMVMSFYFCPIVAAVLTFIYFINMRVFAVR 950
951 ARLTKSKEIEKKENMSSGVFAFSSDDEMFKDPSFLIQEAFYNMHTVINYG 1000
1001 LEDYFCNLIEKAIDYKNKGQKRRIIVNAALWGFSQSAQLFINSFAYWFGS 1050
1051 FLIKRGTILVDDFMKSLFTFIFTGSYAGKLMSLKGDSENAKLSFEKYYPL 1100
1101 MIRKSNIDVRDDGGIRINKNLIKGKVDIKDVNFRYISRPNVPIYKNLSFT 1150
1151 CDSKKTTAIVGETGSGKSTFMNLLLRFYDLKNDHIILKNDMTNFQDYQNN 1200
1201 NNNSLVLKNVNEFSNQSGSAEDYTVFNNNGEILLDDINICDYNLRDLRNL 1250
1251 FSIVSQEPMLFNMSIYENIKFGREDATLEDVKRVSKFAAIDEFIESLPNK 1300
1301 YDTNVGPYGKSLSGGQKQRIAIARALLREPKILLLDEATSSLDSNSEKLI 1350
1351 EKTIVDIKDKADKTIITIAHRIASIKRSDKIVVFNNPDRNGTFVQSHGTH 1400
1401 DELLSAQDGIYKKYVKLAK 1419

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.