SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P15208 from www.uniprot.org...

The NucPred score for your sequence is 0.66 (see score help below)

   1  MGFGRGCETTAVPLLVAVAALLVGTAGHLYPGEVCPGMDIRNNLTRLHEL    50
51 ENCSVIEGHLQILLMFKTRPEDFRDLSFPKLIMITDYLLLFRVYGLESLK 100
101 DLFPNLTVIRGSRLFFNYALVIFEMVHLKELGLYNLMNITRGSVRIEKNN 150
151 ELCYLATIDWSRILDSVEDNYIVLNKDDNEECGDVCPGTAKGKTNCPATV 200
201 INGQFVERCWTHSHCQKVCPTICKSHGCTAEGLCCHKECLGNCSEPDDPT 250
251 KCVACRNFYLDGQCVETCPPPYYHFQDWRCVNFSFCQDLHFKCRNSRKPG 300
301 CHQYVIHNNKCIPECPSGYTMNSSNLMCTPCLGPCPKVCQILEGEKTIDS 350
351 VTSAQELRGCTVINGSLIINIRGGNNLAAELEANLGLIEEISGFLKIRRS 400
401 YALVSLSFFRKLHLIRGETLEIGNYSFYALDNQNLRQLWDWSKHNLTITQ 450
451 GKLFFHYNPKLCLSEIHKMEEVSGTKGRQERNDIALKTNGDQASCENELL 500
501 KFSFIRTSFDKILLRWEPYWPPDFRDLLGFMLFYKEAPYQNVTEFDGQDA 550
551 CGSNSWTVVDIDPPQRSNDPKSQTPSHPGWLMRGLKPWTQYAIFVKTLVT 600
601 FSDERRTYGAKSDIIYVQTDATNPSVPLDPISVSNSSSQIILKWKPPSDP 650
651 NGNITHYLVYWERQAEDSELFELDYCLKGLKLPSRTWSPPFESDDSQKHN 700
701 QSEYDDSASECCSCPKTDSQILKELEESSFRKTFEDYLHNVVFVPRPSRK 750
751 RRSLEEVGNVTATTLTLPDFPNVSSTIVPTSQEEHRPFEKVVNKESLVIS 800
801 GLRHFTGYRIELQACNQDSPDERCSVAAYVSARTMPEAKADDIVGPVTHE 850
851 IFENNVVHLMWQEPKEPNGLIVLYEVSYRRYGDEELHLCVSRKHFALERG 900
901 CRLRGLSPGNYSVRVRATSLAGNGSWTEPTYFYVTDYLDVPSNIAKIIIG 950
951 PLIFVFLFSVVIGSIYLFLRKRQPDGPMGPLYASSNPEYLSASDVFPSSV 1000
1001 YVPDEWEVPREKITLLRELGQGSFGMVYEGNAKDIIKGEAETRVAVKTVN 1050
1051 ESASLRERIEFLNEASVMKGFTCHHVVRLLGVVSKGQPTLVVMELMAHGD 1100
1101 LKSHLRSLRPDAENNPGRPPPTLQEMIQMTAEIADGMAYLNAKKFVHRDL 1150
1151 AARNCMVAHDFTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMSPESLKD 1200
1201 GVFTASSDMWSFGVVLWEITSLAEQPYQGLSNEQVLKFVMDGGYLDPPDN 1250
1251 CPERLTDLMRMCWQFNPKMRPTFLEIVNLLKDDLHPSFPEVSFFYSEENK 1300
1301 APESEELEMEFEDMENVPLDRSSHCQREEAGGREGGSSLSIKRTYDEHIP 1350
1351 YTHMNGGKKNGRVLTLPRSNPS 1372

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.