| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P15822 from www.uniprot.org...
The NucPred score for your sequence is 1.00 (see score help below)
1 MPRTKQIHPRNLRDKIEEAQKELNGAEVSKKEILQAGVKGTSESLKGVKR 50
51 KKIVAENHLKKIPKSPLRNPLQAKHKQNTEESSFAVLHSASESHKKQNYI 100
101 PVKNGKQFTKQNGETPGIIAEASKSEESVSPKKPLFLQQPSELRRWRSEG 150
151 ADPAKFSDLDEQCDSSSLSSKTRTDNSECISSHCGTTSPSYTNTAFDVLL 200
201 KAMEPELSTLSQKGSPCAIKTEKLRPNKTARSPPKLKNSSMDAPNQTSQE 250
251 LVAESQSSCTSYTVHMSAAQKNEQGAMQSASHLYHQHEHFVPKSNQHNQQ 300
301 LPGCSGFTGSLTNLQNQENAKLEQVYNIAVTSSVGLTSPSSRSQVTPQNQ 350
351 QMDSASPLSISPANSTQSPPMPIYNSTHVASVVNQSVEQMCNLLLKDQKP 400
401 KKQGKYICEYCNRACAKPSVLLKHIRSHTGERPYPCVTCGFSFKTKSNLY 450
451 KHKKSHAHTIKLGLVLQPDAGGLFLSHESPKALSIHSDVEDSGESEEEGA 500
501 TDERQHDLGAMELQPVHIIKRMSNAETLLKSSFTPSSPENVIGDFLLQDR 550
551 SAESQAVTELPKVVVHHVTVSPLRTDSPKAMDPKPELSSAQKQKDLQVTN 600
601 VQPLSANMSQGGVSRLETNENSHQKGDMNPLEGKQDSHVGTVHAQLQRQQ 650
651 ATDYSQEQQGKLLSPRSLGSTDSGYFSRSESADQTVSPPTPFARRLPSTE 700
701 QDSGRSNGPSAALVTTSTPSALPTGEKALLLPGQMRPPLATKTLEERISK 750
751 LISDNEALVDDKQLDSVKPRRTSLSRRGSIDSPKSYIFKDSFQFDLKPVG 800
801 RRTSSSSDIPKSPFTPTEKSKQVFLLSVPSLDCLPITRSNSMPTTGYSAV 850
851 PANIIPPPHPLRGSQSFDDKIGAFYDDVFVSGPNAPVPQSGHPRTLVRQA 900
901 AIEDSSANESHVLGTGQSLDESHQGCHAAGEAMSVRSKALAQGPHIEKKK 950
951 SHQGRGTMFECETCRNRYRKLENFENHKKFYCSELHGPKTKVAMREPEHS 1000
1001 PVPGGLQPQILHYRVAGSSGIWEQTPQIRKRRKMKSVGDDEELQQNESGT 1050
1051 SPKSSEGLQFQNALGCNPSLPKHNVTIRSDQQHKNIQLQNSHIHLVARGP 1100
1101 EQTMDPKLSTIMEQQISSAAQDKIELQRHGTGISVIQHTNSLSRPNSFDK 1150
1151 PEPFERASPVSFQELNRTGKSGSLKVIGISQEESHPSRDGSHPHQLALSD 1200
1201 ALRGELQESSRKSPSERHVLGQPSRLVRQHNIQVPEILVTEEPDRDLEAQ 1250
1251 CHDQEKSEKFSWPQRSETLSKLPTEKLPPKKKRLRLAEIEHSSTESSFDS 1300
1301 TLSRSLSRESSLSHTSSFSASLDIEDVSKTEASPKIDFLNKAEFLMIPAG 1350
1351 LNTLNVPGCHREMRRTASEQINCTQTSMEVSDLRSKSFDCGSITPPQTTP 1400
1401 LTELQPPSSPSRVGVTGHVPLLERRRGPLVRQISLNIAPDSHLSPVHPTS 1450
1451 FQNTALPSVNAVPYQGPQLTSTSLAEFSANTLHSQTQVKDLQAETSNSSS 1500
1501 TNVFPVQQLCDINLLNQIHAPPSHQSTQLSLQVSTQGSKPDKNSVLSGSS 1550
1551 KSEDCFAPKYQLHCQVFTSGPSCSSNPVHSLPNQVISDPVGTDHCVTSAT 1600
1601 LPTKLIDSMSNSHPLLPPELRPLGSQVQKVPSSFMLPIRLQSSVPAYCFA 1650
1651 TLTSLPQILVTQDLPNQPICQTNHSVVPISEEQNSVPTLQKGHQNALPNP 1700
1701 EKEFLCENVFSEMSQNSSLSESLPITQKISVGRLSPQQESSASSKRMLSP 1750
1751 ANSLDIAMEKHQKRAKDENGAVCATDVRPLEALSSRVNEASKQKKPILVR 1800
1801 QVCTTEPLDGVMLEKDVFSQPEISNEAVNLTNVLPADNSSTGCSKFVVIE 1850
1851 PISELQEFENIKSSTSLTLTVRSSPAPSENTHISPLKCTDNNQERKSPGV 1900
1901 KNQGDKVNIQEQSQQPVTSLSLFNIKDTQQLAFPSLKTTTNFTWCYLLRQ 1950
1951 KSLHLPQKDQKTSAYTDWTVSASNPNPLGLPTKVALALLNSKQNTGKSLY 2000
2001 CQAITTHSKSDLLVYSSKWKSSLSKRALGNQKSTVVEFSNKDASEINSEQ 2050
2051 DKENSLIKSEPRRIKIFDGGYKSNEEYVYVRGRGRGKYICEECGIRCKKP 2100
2101 SMLKKHIRTHTDVRPYHCTYCNFSFKTKGNLTKHMKSKAHSKKCVDLGVS 2150
2151 VGLIDEQDTEESDEKQRFSYERSGYDLEESDGPDEDDNENEDDDEDSQAE 2200
2201 SVLSATPSVTASPQHLPSRSSLQDPVSTDEDVRITDCFSGVHTDPMDVLP 2250
2251 RALLTRMTVLSTAQSDYNRKTLSPGKARQRAARDENDTIPSVDTSRSPCH 2300
2301 QMSVDYPESEEILRSSMAGKAVAITQSPSSVRLPPAAAEHSPQTAAGMPS 2350
2351 VASPHPDPQEQKQQITLQPTPGLPSPHTHLFSHLPLHSQQQSRTPYNMVP 2400
2401 VGGIHVVPAGLTYSTFVPLQAGPVQLTIPAVSVVHRTLGTHRNTVTEVSG 2450
2451 TTNPAGVAELSSVVPCIPIGQIRVPGLQNLSTPGLQSLPSLSMETVNIVG 2500
2501 LANTNMAPQVHPPGLALNAVGLQVLTANPSSQSSPAPQAHIPGLQILNIA 2550
2551 LPTLIPSVSQVAVDAQGAPEMPASQSKACETQPKQTSVASANQVSRTESP 2600
2601 QGLPTVQRENAKKVLNPPAPAGDHARLDGLSKMDTEKAASANHVKPKPEL 2650
2651 TSIQGQPASTSQPLLKAHSEVFTKPSGQQTLSPDRQVPRPTALPRRQPTV 2700
2701 HFSDVSSDDDEDRLVIAT 2718
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.