SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P16025 from www.uniprot.org...

The NucPred score for your sequence is 0.94 (see score help below)

   1  MAERANLVFHNKEIDGTAMKRLISRLIDHFGMGYTSHILDQIKTLGFHQA    50
51 TTTSISLGIEDLLTIPSKGWLVQDAEQQSFLLEKHYYYGAIHAVEKLRQS 100
101 VEIWYATSEYLKQEMNSNFRITDPSNPVYLMSFSGARGNASQVHQLVGMR 150
151 GLMADPQGQMIHLPIQSNLREGLSLTEYIISCYGARKGVVDTAVRTADAG 200
201 YLTRRLVEVVQHIIVRRRDCGTIQGISVSPQNGMTEKLFVQTLIGRVLAD 250
251 DIYIGSRCIASRNQDIGIGLVNRFITAFRAQPFRAQPIYIRTPFTCRSTS 300
301 WICQLCYGRSPTHGDLVELGEAVGIIAGQSIGEPGTQLTLRTFHTGGVFT 350
351 GGTADLIRSPSNGKIQFNEDLVHPTRTRHGQPAFLCYIDLHVTIQSQDIL 400
401 HSVNIPLKSLILVQNDQYVESEQVIAEIRAGTSTLHFKEKVQKHIYSESD 450
451 GEMHWSTDVYHAPEYQYGNLRRLPKTSHLWILSVSMCRSSIASFSLHKDQ 500
501 DQMNTYSFSVDGRYIFDFSMANDQVSHRLLDTFGKKDREILDYLTPDRIV 550
551 FNGHWNCFYPSILQDNSDLLAKKRRNRLVVPLQYHQEQEKERISCLGISM 600
601 EIPFMGVLRRNTIFAYFDDPRYRKDKRGSGIVKFRYRTLEEEYRTQEEEY 650
651 RTREEEYRTREEDSEDEYESPENKYRTREGEGEYKILEDEYRTLEDEYET 700
701 LEDEYGILEDEYRTLEKDSEEEYGSLENKYRTREGEGEYEILEEESEEEY 750
751 GSSEDGSEKEYGTLEEDSEEDSEEDSEDEYGSPEEDSILKKEGFIEHRGT 800
801 KEFSLKYQKEVDRFFFILQELHILPRSSSLKVLDNSIIGVDTQLTKNTRS 850
851 RLGGLVRVKRKKSHTELKIFSGDIHFPEEADKILGGSLIPPEREKKDSKE 900
901 SKKRKNWVYVQRKKFLKSKEKYFVSVRPAVAYEMDEGINLATLFPQDLLQ 950
951 EEDNLQLRLVNFISHENSKLTQRIYHTNSQFVRTCLVVNWEQEEKEGARA 1000
1001 SLVEVKTNDLIRDFLRIELVKSTILYTRRRYDRTSVGLIPNNRLDRNNTN 1050
1051 SFYSKAKIQSLSQHQEVIGTLLNRNKEYPSLMILLASNCSRIGLFKNSKY 1100
1101 PNAVKESNPRIPIRDIFGLLGVIVPSISNFSSSYYLLTHNQILLKKYLFL 1150
1151 DNLKQTLQVLQGLKYSLIDENKRISNFDSNIMLEPFHLNWHFLHHDSWEE 1200
1201 TLAIIHLGQFICENLCLFKLHIKKSGQIFIVNMDSFVLRAAKPYLATIGA 1250
1251 TVHGHYGKILYKGDRLVTFIYEKSRSSDITQGLPKVEQIFEARSIDSLSP 1300
1301 NLERRIEDWNERIPRILGVPWGFLIGAELTIAQSRISLVNKIQKVYRSQG 1350
1351 VQIHNRHIEIIIRQVTSKVRVSEDGMSNVFLPGELIGLLRAERAGRALDE 1400
1401 SIYYRAILLGITRASLNTQSFISEASFQETARVLAKAALRGRIDWLKGLK 1450
1451 ENVVLGGIIPVGTGFQKFVHRSPQDKNLYLEIQKKNLFASEMRDILFLHT 1500
1501 ELVSSDSDVTNNFYETSETPFTPIYTI 1527

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.