SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P16620 from www.uniprot.org...

The NucPred score for your sequence is 0.77 (see score help below)

   1  MALLYRRMSMLLNIILAYIFLCAICVQGSVKQEWAEIGKNVSLECASENE    50
51 AVAWKLGNQTINKNHTRYKIRTEPLKSNDDGSENNDSQDFIKYKNVLALL 100
101 DVNIKDSGNYTCTAQTGQNHSTEFQVRPYLPSKVLQSTPDRIKRKIKQDV 150
151 MLYCLIEMYPQNETTNRNLKWLKDGSQFEFLDTFSSISKLNDTHLNFTLE 200
201 FTEVYKKENGTYKCTVFDDTGLEITSKEITLFVMEVPQVSIDFAKAVGAN 250
251 KIYLNWTVNDGNDPIQKFFITLQEAGTPTFTYHKDFINGSHTSYILDHFK 300
301 PNTTYFLRIVGKNSIGNGQPTQYPQGITTLSYDPIFIPKVETTGSTASTI 350
351 TIGWNPPPPDLIDYIQYYELIVSESGEVPKVIEEAIYQQNSRNLPYMFDK 400
401 LKTATDYEFRVRACSDLTKTCGPWSENVNGTTMDGVATKPTNLSIQCHHD 450
451 NVTRGNSIAINWDVPKTPNGKVVSYLIHLLGNPMSTVDREMWGPKIRRID 500
501 EPHHKTLYESVSPNTNYTVTVSAITRHKKNGEPATGSCLMPVSTPDAIGR 550
551 TMWSKVNLDSKYVLKLYLPKISERNGPICCYRLYLVRINNDNKELPDPEK 600
601 LNIATYQEVHSDNVTRSSAYIAEMISSKYFRPEIFLGDEKRFSENNDIIR 650
651 DNDEICRKCLEGTPFLRKPEIIHIPPQGSLSNSDSELPILSEKDNLIKGA 700
701 NLTEHALKILESKLRDKRNAVTSDENPILSAVNPNVPLHDSSRDVFDGEI 750
751 DINSNYTGFLEIIVRDRNNALMAYSKYFDIITPATEAEPIQSLNNMDYYL 800
801 SIGVKAGAVLLGVILVFIVLWVFHHKKTKNELQGEDTLTLRDSLSRALFG 850
851 RRNHNHSHFITSGNHKGFDAGPIHRLDLENAYKNRHKDTDYGFLREYEML 900
901 PNRFSDRTTKNSDLKENACKNRYPDIKAYDQTRVKLAVINGLQTTDYINA 950
951 NFVIGYKERKKFICAQGPMESTIDDFWRMIWEQHLEIIVMLTNLEEYNKA 1000
1001 KCAKYWPEKVFDTKQFGDILVKFAQERKTGDYIERTLNVSKNKANVGEEE 1050
1051 DRRQITQYHYLTWKDFMAPEHPHGIIKFIRQINSVYSLQRGPILVHCSAG 1100
1101 VGRTGTLVALDSLIQQLEEEDSVSIYNTVCDLRHQRNFLVQSLKQYIFLY 1150
1151 RALLDTGTFGNTDICIDTMASAIESLKRKPNEGKCKLEVEFEKLLATADE 1200
1201 ISKSCSVGENEENNMKNRSQEIIPYDRNRVILTPLPMRENSTYINASFIE 1250
1251 GYDNSETFIIAQDPLENTIGDFWRMISEQSVTTLVMISEIGDGPRKCPRY 1300
1301 WADDEVQYDHILVKYVHSESCPYYTRREFYVTNCKIDDTLKVTQFQYNGW 1350
1351 PTVDGEVPEVCRGIIELVDQAYNHYKNNKNSGCRSPLTVHCSLGTDRSSI 1400
1401 FVAMCILVQHLRLEKCVDICATTRKLRSQRTGLINSYAQYEFLHRAIINY 1450
1451 SDLHHIAESTLD 1462

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.