SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P17883 from www.uniprot.org...

The NucPred score for your sequence is 0.63 (see score help below)

   1  MSDIKQLLKEAKQELTNRDYEETIEISEKVLKLDPDNYFAHIFLGKALSS    50
51 LPASNNVSSNRNLERATNHYVSAAKLVPDNLLAWKGLFLLFRTTEVVPDI 100
101 LSYDEYFDLCGQYADALLKQEQSQVELINDIKLLKKTHPDCQKAFYQHLK 150
151 PGSLMAETIGRHLSTPQDALLNLIKILSNIETTEIGKTLSQNRLKLKASD 200
201 PDYQIKLNSFSWEIIKNSEIDQLYNQLVNILADDQKRSEIENQWLEYRIK 250
251 VLKSMPLDVKKDFFTKVKEMVEDMVLVNHQSLLAWQKYFEWTDYEDLDNM 300
301 DAPLIIKYFKKFPKDPLAMILYSWLSSKLSKYDIKSLESANKPPEGHKKT 350
351 EKETDIKDVDETNEDEVKDRVEDEVKDRVEDEVKDQDEEAKEDEEEDLDD 400
401 IEIGLLEEEVVTVLTENIVKCKNNILAHRILCQYYLLTKEYEAALPYIKN 450
451 GISLIAYNIKDLGVHLPLTKREFSLDLATVYTYVDAPKDHNAALKLYDNI 500
501 LSGDFSNIQAKMGKGIIFIERKNWKDAMTLLTQVHEQSPNNLEVLSELSW 550
551 SKAHMGYMDEALAGLDTVIKGIKGMDLRSIDFRALNLWRQAKVYIMKHAS 600
601 INDAKQENVKCAFKLLIQSIKILDTFAPGFSTLGDIYCHYYKDHLRAFKC 650
651 YFKAFDLDAGDYTAAKYITETYASKPNWQAASSIASRLIKGEKAKAELRS 700
701 NNWPFRVVGIAHLEKQEESDSIEWFQSALRVDPNDVESWVGLGQAYHACG 750
751 RIEASIKVFDKAIQLRPSHTFAQYFKAISLCDVGEYLESLDILEKVCQEA 800
801 ATEESFQIGLVEVLMRCSLDLYSQGFLLKSVSIAKDTIERIKIIISELKC 850
851 ENQQVWIYLSQVLRLFIWIESKVDTLPVESLVSIFENSQFSGSEEIDSVD 900
901 NIKIDTLLDSTTDDNVSIACKFLILASKYSVSDQKFTDIAGTVRASYWYN 950
951 IGISELTAFITLKEPQYRDAAIFAFKKSIQLQSNTSETWIGLGIATMDIN 1000
1001 FRVSQHCFIKATALEPKATNTWFNLAMLGLKKKDTEFAQQVLNKLQSLAP 1050
1051 QDSSPWLGMALILEEQGDIIGSSKLFAHSFILSNGRSKAAQFMYAKNVLE 1100
1101 NHINNGDDERDIETVEKLTTASIALEQFFKKSPDSQFALQCALLTLERLH 1150
1151 HYENANELANRLIGILEKKFEKTQDERELFNFAIIKGQFARIHLGLGNFE 1200
1201 LSIENADLSQGIISESSDEKSMKTKISNHICLGLSYFFLNDFDQTLNQFQ 1250
1251 ELLSISKDSKHLVVLIAKVLYDVGESDTKEIALQELTEYIATSGADLLVT 1300
1301 LTIAAMSILDDKREDLSIILEELKALPLSKQIIDKHKDAPYLIEEITKRL 1350
1351 YRNDTGKQVWQRSAYFFPNNLKVWERLDKNIQRRIASNGQNKVTAEEMSK 1400
1401 LYCESKNLRSIQRGMFLCPWNVTAVKALNECF 1432

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.