SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P18168 from www.uniprot.org...

The NucPred score for your sequence is 0.76 (see score help below)

   1  MFRKHFRRKPATSSSLESTIESADSLGMSKKTATKRQRPRHRVPKIATLP    50
51 STIRDCRSLKSACNLIALILILLVHKISAAGNFELEILEISNTNSHLLNG 100
101 YCCGMPAELRATKTIGCSPCTTAFRLCLKEYQTTEQGASISTGCSFGNAT 150
151 TKILGGSSFVLSDPGVGAIVLPFTFRWTKSFTLILQALDMYNTSYPDAER 200
201 LIEETSYSGVILPSPEWKTLDHIGRNARITYRVRVQCAVTYYNTTCTTFC 250
251 RPRDDQFGHYACGSEGQKLCLNGWQGVNCEEAICKAGCDPVHGKCDRPGE 300
301 CECRPGWRGPLCNECMVYPGCKHGSCNGSAWKCVCDTNWGGILCDQDLNF 350
351 CGTHEPCKHGGTCENTAPDKYRCTCAEGLSGEQCEIVEHPCATRPCRNGG 400
401 TCTLKTSNRTQAQVYRTSHGRSNMGRPVRRSSSMRSLDHLRPEGQALNGS 450
451 SSPGLVSLGSLQLQQQLAPDFTCDCAAGWTGPTCEINIDECAGGPCEHGG 500
501 TCIDLIGGFRCECPPEWHGDVCQVDVNECEAPHSAGIAANALLTTTATAI 550
551 IGSNLSSTALLAALTSAVASTSLAIGPCINAKECRNQPGSFACICKEGWG 600
601 GVTCAENLDDCVGQCRNGATCIDLVNDYRCACASGFKGRDCETDIDECAT 650
651 SPCRNGGECVDMVGKFNCICPLGYSGSLCEEAKENCTPSPCLEGHCLNTP 700
701 EGYYCHCPPDRAGKHCEQLRPLCSQPPCNEGCFANVSLATSATTTTTTTT 750
751 TATTTRKMAKPSGLPCSGHGSCEMSDVGTFCKCHVGHTGTFCEHNLNECS 800
801 PNPCRNGGICLDGDGDFTCECMSGWTGKRCSERATGCYAGQCQNGGTCMP 850
851 GAPDKALQPHCRCAPGWTGLFCAEAIDQCRGQPCHNGGTCESGAGWFRCV 900
901 CAQGFSGPDCRINVNECSPQPCQGGATCIDGIGGYSCICPPGRHGLRCEI 950
951 LLSDPKSACQNASNTISPYTALNRSQNWLDIALTGRTEDDENCNACVCEN 1000
1001 GTSRCTNLWCGLPNCYKVDPLSKSSNLSGVCKQHEVCVPALSETCLSSPC 1050
1051 NVRGDCRALEPSRRVAPPRLPAKSSCWPNQAVVNENCARLTILLALERVG 1100
1101 KGASVEGLCSLVRVLLAAQLIKKPASTFGQDPGMLMVLCDLKTGTNDTVE 1150
1151 LTVSSSKLNDPQLPVAVGLLGELLSFRQLNGIQRRKELELQHAKLAALTS 1200
1201 IVEVKLETARVADGSGHSLLIGVLCGVFIVLVGFSVFISLYWKQRLAYRT 1250
1251 SSGMNLTPSLDALRHEEEKSNNLQNEENLRRYTNPLKGSTSSLRAATGME 1300
1301 LSLNPAPELAASAASSSALHRSQPLFPPCDFERELDSSTGLKQAHKRSSQ 1350
1351 ILLHKTQNSDMRKNTVGSLDSPRKDFGKRSINCKSMPPSSGDEGSDVLAT 1400
1401 TVMV 1404

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.