SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P18963 from www.uniprot.org...

The NucPred score for your sequence is 0.83 (see score help below)

   1  MNQSDPQDKKNFPMEYSLTKHLFFDRLLLVLPIESNLKTYADVEADSVFN    50
51 SCRSIILNIAITKDLNPIIENTLGLIDLIVQDEEITSDNITDDIAHSILV 100
101 LLRLLSDVFEYYWDQNNDFKKIRNDNYKPGFSSHRPNFHTSRPKHTRINP 150
151 ALATMLLCKISKLKFNTRTLKVLQNMSHHLSGSATISKSSILPDSQEFLQ 200
201 KRNYPAYTEKIDLTIDYIQRFISASNHVEFTKCVKTKVVAPLLISHTSTE 250
251 LGVVNHLDLFGCEYLTDKNLLAYLDILQHLSSYMKRTIFHSLLLYYASKA 300
301 FLFWIMARPKEYVKIYNNLISSDYNSPSSSSDNGGSNNSDKTSISQLVSL 350
351 LFDDVYSTFSVSSLLTNVNNDHHYHLHHSSSSSKTTNTNSPNSISKTSIK 400
401 QSSVNASGNVSPSQFSTGNDASPTSPMASLSSPLNTNILGYPLSPITSTL 450
451 GQANTSTSTTAATTKTDADTPSTMNTNNNNNNNNSANLNNIPQRIFSLDD 500
501 ISSFNSSRKSLNLDDSNSLFLWDTSQHSNASMTNTNMHAGVNNSQSQNDQ 550
551 SSLNYMENIMELYSNYTGSELSSHTAILRFLVVLTLLDSEVYDEMNSNSY 600
601 RKISEPIMNINPKDSNTSSWGSASKNPSIRHLTHGLKKLTLQQGRKRNVK 650
651 FLTYLIRNLNGGQFVSDVSLIDSIRSILFLMTMTSSISQIDSNIASVIFS 700
701 KRFYNLLGQNLEVGTNWNSATANTFISHCVERNPLTHRRLQLEFFASGLQ 750
751 LDSDLFLRHLQLEKELNHIDLPKISLYTEGFRVFFHLVSTKKLHEDIAEK 800
801 TSSVLKRLFCIIADILLKATPYFDDNVTKIIASILDGHILDQFDAARTLS 850
851 NDDHVSFDAATSVYTEPTEIIHNSSDASLVSSLSQSPLSINSGSNITNTR 900
901 TWDIQSILPTLSNRSSASDLSLSNILTNPLEAQQNNNANLLAHRLSGVPT 950
951 TKRYASPNDSERSRQSPYSSPPQLQQSDLPSPLSVLSSSAGFSSNHSITA 1000
1001 TPTILKNIKSPKPNKTKKIADDKQLKQPSYSRVILSDNDEARKIMMNIFS 1050
1051 IFKRMTNWFIRPDANTEFPKTFTDIIKPLFVSILDSNQRLQVTARAFIEI 1100
1101 PLSYIATFEDIDNDLDPRVLNDHYLLCTYAVTLFASSLFDLKLENAKREM 1150
1151 LLDIIVKFQRVRSYLSNLAEKHNLVQAIITTERLTLPLLVGAVGSGIFIS 1200
1201 LYCSRGNTPRLIKISCCEFLRSLRFYQKYVGALDQYSIYNIDFIDAMAQD 1250
1251 NFTASGSVALQRRLRNNILTYIKGSDSILLDSMDVIYKKWFYFSCSKSVT 1300
1301 QEELVDFRSLAGILASMSGILSDMQELEKSKSAPDNEGDSLSFESRNPAY 1350
1351 EVHKSLKLELTKKMNFFISKQCQWLNNPNLLTRENSRDILSIELHPLSFN 1400
1401 LLFNNLGLKIDELMSIDLSKSHEDSSFVLLEQIIIIIRTILKRDDDEKIM 1450
1451 LLFSTDLLDAVDKLIEIVEKISIKSSKYYKGIIQMSKMFRAFEHSEKNLG 1500
1501 ISNHFHLKNKWLKLVIGWFKLSINKDYDFENLSRPLREMDLQKRDEDFLY 1550
1551 IDTSIESAKALAYLTHNVPLEIPPSSSKEDWNRSSTVSFGNHFTILLKGL 1600
1601 EKSADLNQFPVSLRHKISILNENVIIALTNLSNANVNVSLKFTLPMGYSP 1650
1651 NKDIRIAFLRVFIDIVTNYPVNPEKHEMDKMLAIDDFLKYIIKNPILAFF 1700
1701 GSLACSPADVDLYAGGFLNAFDTRNASHILVTELLKQEIKRAARSDDILR 1750
1751 RNSCATRALSLYTRSRGNKYLIKTLRPVLQGIVDNKESFEIDKMKPGSEN 1800
1801 SEKMLDLFEKYMTRLIDAITSSIDDFPIELVDICKTIYNAASVNFPEYAY 1850
1851 IAVGSFVFLRFIGPALVSPDSENIIIVTHAHDRKPFITLAKVIQSLANGR 1900
1901 ENIFKKDILVSKEEFLKTCSDKIFNFLSELCKIPTNNFTVNVREDPTPIS 1950
1951 FDYSFLHKFFYLNEFTIRKEIINESKLPGEFSFLKNTVMLNDKILGVLGQ 2000
2001 PSMEIKNEIPPFVVENREKYPSLYEFMSRYAFKKVDMKEEEEDNAPFVHE 2050
2051 AMTLDGIQIIVVTFTNCEYNNFVMDSLVYKVLQIYARMWCSKHYVVIDCT 2100
2101 TFYGGKANFQKLTTLFFSLIPEQASSNCMGCYYFNVNKSFMDQWASSYTV 2150
2151 ENPYLVTTIPRCFINSNTDQSLIKSLGLSGRSLEVLKDVRVTLHDITLYD 2200
2201 KEKKKFCPVSLKIGNKYFQVLHEIPQLYKVTVSNRTFSIKFNNVYKISNL 2250
2251 ISVDVSNTTGVSSEFTLSLDNEEKLVFCSPKYLEIVKMFYYAQLKMEEDF 2300
2301 GTDFSNDISFSTSSSAVNASYCNVKEVGEIISHLSLVILVGLFNEDDLVK 2350
2351 NISYNLLVATQEAFNLDFGTRLHKSPETYVPDDTTTFLALIFKAFSESST 2400
2401 ELTPYIWKYMLDGLENDVIPQEHIPTVVCSLSYWVPNLYEHVYLANDEEG 2450
2451 PEAISRIIYSLIRLTVKEPNFTTAYLQQIWFLLALDGRLTNVIVEEIVSH 2500
2501 ALDRDSENRDWMKAVSILTSFPTTEIACQVIEKLINMIKSFLPSLAVEAS 2550
2551 AHSWSELTILSKISVSIFFESPLLSQMYLPEILFAVSLLIDVGPSEIRVS 2600
2601 LYELLMNVCHSLTNNESLPERNRKNLDIVCATFARQKLNFISGFSQEKGR 2650
2651 VLPNFAASSFSSKFGTLDLFTKNIMLLMEYGSISEGAQWEAKYKKYLMDA 2700
2701 IFGHRSFFSARAMMILGIMSKSHTSLFLCKELLVETMKVFAEPVVDDEQM 2750
2751 FIIIAHVFTYSKIVEGLDPSSELMKELFWLATICVESPHPLLFEGGLLFM 2800
2801 VNCLKRLYTVHLQLGFDGKSLAKKLMESRNFAATLLAKLESYNGCIWNED 2850
2851 NFPHIILGFIANGLSIPVVKGAALDCLQALFKNTYYERKSNPKSSDYLCY 2900
2901 LFLLHLVLSPEQLSTLLLEVGFEDELVPLNNTLKVPLTLINWLSSDSDKS 2950
2951 NIVLYQGALLFSCVMSDEPCKFRFALLMRYLLKVNPICVFRFYTLTRKEF 3000
3001 RRLSTLEQSSEAVAVSFELIGMLVTHSEFNYLEEFNDEMVELLKKRGLSV 3050
3051 VKPLDIFDQEHIEKLKGEGEHQVAIYERKRLATMILARMSCS 3092

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.