 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P19137 from www.uniprot.org...
The NucPred score for your sequence is 0.75 (see score help below)
1 MRGSGTGAALLVLLASVLWVTVRSQQRGLFPAILNLATNAHISANATCGE 50
51 KGPEMFCKLVEHVPGRPVRHAQCRVCDGNSTNPRERHPISHAIDGTNNWW 100
101 QSPSIQNGREYHWVTVTLDLRQVFQVAYIIIKAANAPRPGNWILERSVDG 150
151 VKFKPWQYYAVSDTECLTRYKITPRRGPPTYRADNEVICTSYYSKLVPLE 200
201 HGEIHTSLINGRPSADDPSPQLLEFTSARYIRLRLQRIRTLNADLMTLSH 250
251 RDLRDLDPIVTRRYYYSIKDISVGGMCICYGHASSCPWDEEAKQLQCQCE 300
301 HNTCGESCDRCCPGYHQQPWRPGTISSGNECEECNCHNKAKDCYYDSSVA 350
351 KERRSLNTAGQYSGGGVCVNCSQNTTGINCETCIDQYYRPHKVSPYDDHP 400
401 CRPCNCDPVGSLSSVCIKDDRHADLANGKWPGQCPCRKGYAGDKCDRCQF 450
451 GYRGFPNCIPCDCRTVGSLNEDPCIEPCLCKKNVEGKNCDRCKPGFYNLK 500
501 ERNPEGCSECFCFGVSGVCDSLTWSISQVTNMSGWLVTDLMSTNKIRSQQ 550
551 DVLGGHRQISINNTAVMQRLTSTYYWAAPEAYLGNKLTAFGGFLKYTVSY 600
601 DIPVETVDSDLMSHADIIIKGNGLTISTRAEGLSLQPYEEYFNVVRLVPE 650
651 NFRDFDTRREIDRDQLMTVLANVTHLLIRANYNSAKMALYRLDSVSLDIA 700
701 SPNAIDLAVAADVEHCECPQGYTGTSCEACLPGYYRVDGILFGGICQPCE 750
751 CHGHASECDIHGICSVCTHNTTGDHCEQCLPGFYGTPSRGTPGDCQPCAC 800
801 PLSIDSNNFSPTCHLTDGEEVVCDQCAPGYSGSWCERCADGYYGNPTVPG 850
851 GTCVPCNCSGNVDPLEAGHCDSVTGECLKCLWNTDGAHCERCADGFYGDA 900
901 VTAKNCRACDCHENGSLSGICHLETGLCDCKPHVTGQQCDQCLSGYYGLD 950
951 TGLGCVPCNCSVEGSVSDNCTEEGQCHCGPGVSGKQCDRCSHGFYAFQDG 1000
1001 GCTPCDCAHTQNNCDPASGECLCPPHTQGLKCEECEEAYWGLDPEQGCQA 1050
1051 CNCSAVGSTSAQCDVLSGHCPCKKGFGGQSCHQCSLGYRSFPDCVPCGCD 1100
1101 LRGTLPDTCDLEQGLCSCSEDGGTCSCKENAVGPQCSKCQAGTFALRGDN 1150
1151 PQGCSPCFCFGLSQLCSELEGYVRTLITLASDQPLLHVVSQSNLKGTIEG 1200
1201 VHFQPPDTLLDAEAVRQHIYAEPFYWRLPKQFQGDQLLAYGGKLQYSVAF 1250
1251 YSTLGTGTSNYEPQVLIKGGRARKHVIYMDAPAPENGVRQDYEVRMKEEF 1300
1301 WKYFNSVSEKHVTHSDFMSVLSNIDYILIKASYGQGLQQSRIANISMEVG 1350
1351 RKAVELPAEGEAALLLELCVCPPGTAGHSCQDCAPGYYREKLPESGGRGP 1400
1401 RPLLAPCVPCNCNNHSDVCDPETGKCLSCRDHTSGDHCELCASGYYGKVT 1450
1451 GLPGDCTPCTCPHHPPFSFSPTCVVEGDSDFRCNACLPGYEGQYCERCSA 1500
1501 GYHGNPRAAGGSCQTCDCNPQGSVHSDCDRASGQCVCKPGATGLHCEKCL 1550
1551 PRHILMESDCVSCDDDCVGPLLNDLDSVGDAVLSLNLTGVSPAPYGILEN 1600
1601 LENTTKYFQRYLIKENAKKIRAEIQLEGIAEQTENLQKELTRVLARHQKV 1650
1651 NAEMERTSNGTQALATFIEQLHANIKEITEKVATLNQTARKDFQPPVSAL 1700
1701 QSMHQNISSLLGLIKERNFTEMQQNATLELKAAKDLLSRIQKRFQKPQEK 1750
1751 LKALKEANSLLSNHSEKLQAAEELLKEAGSKTQESNLLLLLVKANLKEFQ 1800
1801 EKKLRVQEEQNVTSELIAKGREWVDAAGTHTAAAQDTLTQLEHHRDELLL 1850
1851 WARKIRSHVDDLVMQMSKRRARDLVHRAEQHASELQSRAGALDRDLENVR 1900
1901 NVSLNATSAAHVHSNIQTLTEEAEMLAADAHKTANKTDLISESLASRGKA 1950
1951 VLQRSSRFLKESVSTRRKQQGITMKLDELKNLTSQFQESMDNIMKQANDS 2000
2001 LAMLRESPGGMREKGRKARELAAAANESAVKTLEDVLALSLRVFNTSEDL 2050
2051 SRVNATVQETNDLLHNSTMTTLLAGRKMKDMEMQANLLLDRLKPLKTLEE 2100
2101 NLSRNLSEIKLLISRARKQVASIKVAVSADRDCIRAYQPQTSSTNYNTLI 2150
2151 LNVKTQEPDNLLFYLGSSSSSDFLAVEMRRGKVAFLWDLGSGSTRLEFPE 2200
2201 VSINNNRWHSIYITRFGNMGSLSVKEASAAENPPVRTSKSPGPSKVLDIN 2250
2251 NSTLMFVGGLGGQIKKSPAVKVTHFKGCMGEAFLNGKSIGLWNYIEREGK 2300
2301 CNGCFGSSQNEDSSFHFDGSGYAMVEKTLRPTVTQIVILFSTFSPNGLLF 2350
2351 YLASNGTKDFLSIELVRGRVKVMVDLGSGPLTLMTDRRYNNGTWYKIAFQ 2400
2401 RNRKQGLLAVFDAYDTSDKETKQGETPGAASDLNRLEKDLIYVGGLPHSK 2450
2451 AVRKGVSSRSYVGCIKNLEISRSTFDLLRNSYGVRKGCALEPIQSVSFLR 2500
2501 GGYVEMPPKSLSPESSLLATFATKNSSGILLVALGKDAEEAGGAQAHVPF 2550
2551 FSIMLLEGRIEVHVNSGDGTSLRKALLHAPTGSYSDGQEHSISLVRNRRV 2600
2601 ITIQVDENSPVEMKLGPLTEGKTIDISNLYIGGLPEDKATPMLKMRTSFH 2650
2651 GCIKNVVLDAQLLDFTHATGSEQVELDTCLLAEEPMQSLHREHGELPPEP 2700
2701 PTLPQPELCAVDTAPGYVAGAHQFGLSQNSHLVLPLNQSDVRKRLQVQLS 2750
2751 IRTFASSGLIYYVAHQNQMDYATLQLQEGRLHFMFDLGKGRTKVSHPALL 2800
2801 SDGKWHTVKTEYIKRKAFMTVDGQESPSVTVVGNATTLDVERKLYLGGLP 2850
2851 SHYRARNIGTITHSIPACIGEIMVNGQQLDKDRPLSASAVDRCYVVAQEG 2900
2901 TFFEGSGYAALVKEGYKVRLDLNITLEFRTTSKNGVLLGISSAKVDAIGL 2950
2951 EIVDGKVLFHVNNGAGRITATYQPRAARALCDGKWHTLQAHKSKHRIVLT 3000
3001 VDGNSVRAESPHTHSTSADTNDPIYVGGYPAHIKQNCLSSRASFRGCVRN 3050
3051 LRLSRGSQVQSLDLSRAFDLQGVFPHSCPGPEP 3083
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.