 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P19158 from www.uniprot.org...
The NucPred score for your sequence is 0.85 (see score help below)
1 MSQPTKNKKKEHGTDSKSSRMTRTLVNHILFERILPILPVESNLSTYSEV 50
51 EEYSSFISCRSVLINVTVSRDANAMVEGTLELIESLLQGHEIISDKGSSD 100
101 VIESILIILRLLSDALEYNWQNQESLHYNDISTHVEHDQEQKYRPKLNSI 150
151 LPDYSSTHSNGNKHFFHQSKPQALIPELASKLLESCAKLKFNTRTLQILQ 200
201 NMISHVHGNILTTLSSSILPRHKSYLTRHNHPSHCKMIDSTLGHILRFVA 250
251 ASNPSEYFEFIRKSVQVPVTQTHTHSHSHSHSLPSSVYNSIVPHFDLFSF 300
301 IYLSKHNFKKYLELIKNLSVTLRKTIYHCLLLHYSAKAIMFWIMARPAEY 350
351 YELFNLLKDNNNEHSKSLNTLNHTLFEEIHSTFNVNSMITTNQNAHQGSS 400
401 SPSSSSPSSPPSSSSSDNNNQNIIAKSLSRQLSHHQSYIQQQSERKLHSS 450
451 WTTNSQSSTSLSSSTSNSTTTDFSTHTQPGEYDPSLPDTPTMSNITISAS 500
501 SLLSQTPTPTTQLQQRLNSAAAAAAAAASPSNSTPTGYTAEQQSRASYDA 550
551 HKTGHTGKDYDEHFLSVTRLDNVLELYTHFDDTEVLPHTSVLKFLTTLTM 600
601 FDIDLFNELNATSFKYIPDCTMHRPKERTSSFNNTAHETGSEKTSGIKHI 650
651 TQGLKKLTSLPSSTKKTVKFVKMLLRNLNGNQAVSDVALLDTMRALLSFF 700
701 TMTSAVFLVDRNLPSVLFAKRLIPIMGTNLSVGQDWNSKINNSLMVCLKK 750
751 NSTTFVQLQLIFFSSAIQFDHELLLARLSIDTMANNLNMQKLCLYTEGFR 800
801 IFFDIPSKKELRKAIAVKISKFFKTLFSIIADILLQEFPYFDEQITDIVA 850
851 SILDGTIINEYGTKKHFKGSSPSLCSTTRSRSGSTSQSSMTPVSPLGLDT 900
901 DICPMNTLSLVGSSTSRNSDNVNSLNSSPKNLSSDPYLSHLVAPRARHAL 950
951 GGPSSIIRNKIPTTLTSPPGTEKSSPVQRPQTESISATPMAITNSTPLSS 1000
1001 AAFGIRSPLQKIRTRRYSDESLGKFMKSTNNYIQEHLIPKDLNEATLQDA 1050
1051 RRIMINIFSIFKRPNSYFIIPHNINSNLQWVSQDFRNIMKPIFVAIVSPD 1100
1101 VDLQNTAQSFMDTLLSNVITYGESDENISIEGYHLLCSYTVTLFAMGLFD 1150
1151 LKINNEKRQILLDITVKFMKVRSHLAGIAEASHHMEYISDSEKLTFPLIM 1200
1201 GTVGRALFVSLYSSQQKIEKTLKIAYTEYLSAINFHERNIDDADKTWVHN 1250
1251 IEFVEAMCHDNYTTSGSIAFQRRTRNNILRFATIPNAILLDSMRMIYKKW 1300
1301 HTYTHSKSLEKQERNDFRNFAGILASLSGILFINKKILQEMYPYLLDTVS 1350
1351 ELKKNIDSFISKQCQWLNYPDLLTRENSRDILSVELHPLSFNLLFNNLRL 1400
1401 KLKELACSDLSIPENESSYVLLEQIIKMLRTILGRDDDNYVMMLFSTEIV 1450
1451 DLIDLLTDEIKKIPAYCPKYLKAIIQMTKMFSALQHSEVNLGVKNHFHVK 1500
1501 NKWLRQITDWFQVSIAREYDFENLSKPLKEMDLVKRDMDILYIDTAIEAS 1550
1551 TAIAYLTRHTFLEIPPAASDPELSRSRSVIFGFYFNILMKGLEKSSDRDN 1600
1601 YPVFLRHKMSVLNDNVILSLTNLSNTNVDASLQFTLPMGYSGNRNIRNAF 1650
1651 LEVFINIVTNYRTYTAKTDLGKLEAADKFLRYTIEHPQLSSFGAAVCPAS 1700
1701 DIDAYAAGLINAFETRNATHIVVAQLIKNEIEKSSRPTDILRRNSCATRS 1750
1751 LSMLARSKGNEYLIRTLQPLLKKIIQNRDFFEIEKLKPEDSDAERQIELF 1800
1801 VKYMNELLESISNSVSYFPPPLFYICQNIYKVACEKFPDHAIIAAGSFVF 1850
1851 LRFFCPALVSPDSENIIDISHLSEKRTFISLAKVIQNIANGSENFSRWPA 1900
1901 LCSQKDFLKECSDRIFRFLAELCRTDRTIDIQVRTDPTPIAFDYQFLHSF 1950
1951 VYLYGLEVRRNVLNEAKHDDGDIDGDDFYKTTFLLIDDVLGQLGQPKMEF 2000
2001 SNEIPIYIREHMDDYPELYEFMNRHAFRNIETSTAYSPSVHESTSSEGIP 2050
2051 IITLTMSNFSDRHVDIDTVAYKFLQIYARIWTTKHCLIIDCTEFDEGGLD 2100
2101 MRKFISLVMGLLPEVAPKNCIGCYYFNVNETFMDNYGKCLDKDNVYVSSK 2150
2151 IPHYFINSNSDEGLMKSVGITGQGLKVLQDIRVSLHDITLYDEKRNRFTP 2200
2201 VSLKIGDIYFQVLHETPRQYKIRDMGTLFDVKFNDVYEISRIFEVHVSSI 2250
2251 TGVAAEFTVTFQDERRLIFSSPKYLEIVKMFYYAQIRLESEYEMDNNSST 2300
2301 SSPNSNNKDKQQKERTKLLCHLLLVSLIGLFDESKKMKNSSYNLIAATEA 2350
2351 SFGLNFGSHFHRSPEVYVPEDTTTFLGVIGKSLAESNPELTAYMFIYVLE 2400
2401 ALKNNVIPHVYIPHTICGLSYWIPNLYQHVYLADDEEGPENISHIFRILI 2450
2451 RLSVRETDFKAVYMQYVWLLLLDDGRLTDIIVDEVINHALERDSENRDWK 2500
2501 KTISLLTVLPTTEVANNIIQKILAKIRSFLPSLKLEAMTQSWSELTILVK 2550
2551 ISIHVFFETSLLVQMYLPEILFIVSLLIDVGPRELRSSLHQLLMNVCHSL 2600
2601 AINSALPQDHRNNLDEISDIFAHQKVKFMFGFSEDKGRILQIFSASSFAS 2650
2651 KFNILDFFINNILLLMEYSSTYEANVWKTRYKKYVLESVFTSNSFLSARS 2700
2701 IMIVGIMGKSYITEGLCKAMLIETMKVIAEPKITDEHLFLAISHIFTYSK 2750
2751 IVEGLDPNLDLMKHLFWFSTLFLESRHPIIFEGALLFVSNCIRRLYMAQF 2800
2801 ENESETSLISTLLKGRKFAHTFLSKIENLSGIVWNEDNFTHILIFIINKG 2850
2851 LSNPFIKSTAFDFLKMMFRNSYFEHQINQKSDHYLCYMFLLYFVLNCNQF 2900
2901 EELLGDVDFEGEMVNIENKNTIPKILLEWLSSDNENANITLYQGAILFKC 2950
2951 SVTDEPSRFRFALIIRHLLTKKPICALRFYSVIRNEIRKISAFEQNSDCV 3000
3001 PLAFDILNLLVTHSESNSLEKLHEESIERLTKRGLSIVTSSGIFAKNSDM 3050
3051 MIPLDVKPEDIYERKRIMTMILSRMSCSA 3079
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.