 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P19598 from www.uniprot.org...
The NucPred score for your sequence is 0.78 (see score help below)
1 MKIIFFLCSFLFFIINTQCVTHESYQELVKKLEALEDAVLTGYSLFQKEK 50
51 MVLKDGANTQVVAKPADAVSTQSAKNPPGATVPSGTASTKGAIRSPGAAN 100
101 PSDDSSDSDAKSYADLKHRVQNYLFTIKELKYPELFDLTNHMLTLCDNIH 150
151 GFKYLIDGYEEINELLYKLNFYFDLLRAKLNDVCANDYCQIPFNLKIRAN 200
201 ELDVLKKLVFGYRKPLDFIKDNVGKMEDYIKKNKTTIANINELIEGSKKT 250
251 IDQNKNADNEEGKKKLYQAQYDLFIYNKQLQEAHNLISVLEKRIDTLKKN 300
301 ENIKKLLEDIDKIKIDAEKPTTGVNQILSLRLEKESRHEEKIKEIAKTIK 350
351 FNIDRLFTDPLELEYYLREKNKKVDVTPKSQDPTKSVQIPKVPYPNGIVY 400
401 PLPLTDIHNSLAADNDKNSYGDLMNPHTKEKINEKIITDNKERKIFINNI 450
451 KKQIDLEEKNINHTKEQNKKLLEDYEKSKKDYEELLEKFYEMKFNNNFNK 500
501 DVVDKIFSARYTYNVEKQRYNNKFSSSNNSVYNVQKLKKALSYLEDYSLR 550
551 KGISEKDFNHYYTLKTGLEADIKKLTEEIKSSENKILEKNFKGLTHSANA 600
601 SLEVSDIVKLQVQKVLLIKKIEDLRKIELFLKNAQLKDSIHVPNIYKPQN 650
651 KPEPYYLIVLKKEVDKLKEFIPKVKDMLKKEQAVLSSITQPLVAASETTE 700
701 DGGHSTHTLSQSGETEVTEETEETVGHTTTVTITLPPKEVKVVENSIEHK 750
751 SNDNSQALTKTVYLKKLDEFLTKSYICHKYILVSNSSMDQKLLEVYNLTP 800
801 EENELKSCDRLDLLFNIQNNIPAMYSLYDSMNNDLQHLFFELYQKEMIYY 850
851 LHKLKEENHIKKLLEEPKQITGTSSTSSPGNTTVNTAQSATHSNSQNQQS 900
901 NASSTNTQNGVAVSSGPAVVEESHDPLTVLSISNDLKGIVSLLNLGNKTK 950
951 VPNPLTISTTEMEKFYENILKIMIPIFNDDIKQFVKSNSKVITGLTETQK 1000
1001 NALNDEIKKLKDTLQLSFDLYNKYKLKLDRLFNKKKELGQDKMQIKKLTL 1050
1051 LKEQLESKLNSLNNPHNVLQNFSVFFNKKKEAEIAETENTLENTKILLKH 1100
1101 YKGLVKYYNGESSPLKTLSEVSIQTEDNYANLEKFRVLSKIDGKLNDNLH 1150
1151 LGKKKLSFLSSGLHHLITELKEVIKNKNYTGNSPSENNKKVNEALKSYEN 1200
1201 FLPEAKVTTVVTPPQPDVTPSPLSVRVSGSSGSTKEETQIPTSGSLLTEL 1250
1251 QQVVQLQNYDEEDDSLVVLPIFGESEDNDEYLDQVVTGEAISVTMDNILS 1300
1301 GFENEYDVIYLKPLAGVYRSLKKQIEKNIFTFNLNLNDILNSRLKKRKYF 1350
1351 LDVLESDLMQFKHISSNEYIIEDSFKLLNSEQKNTLLKSYKYIKESVEND 1400
1401 IKFAQEGISYYEKVLAKYKDDLESIKKVIKEEKEFPSSPPTTPPSPAKTD 1450
1451 EQKKESKFLPFLTNIETLYNNLVNKIDDYLINLKAKINDCNVEKDEAHVK 1500
1501 ITKLSDLKAIDDKIDLFKNPYDFEAIKKLINDDTKKDMLGKLLSTGLVQN 1550
1551 FPNTIISKLIEGKFQDMLNISQHQCVKKQCPQNSGCFRHLDEREECKCLL 1600
1601 NYKQEGDKCVENPNPTCNENNGGCDADAKCTEEDSGSNGKKITCECTKPD 1650
1651 SYPLFDGIFCSSSNFLGISFLLILMLILYSFI 1682
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.