SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P20930 from www.uniprot.org...

The NucPred score for your sequence is 0.87 (see score help below)

   1  MSTLLENIFAIINLFKQYSKKDKNTDTLSKKELKELLEKEFRQILKNPDD    50
51 PDMVDVFMDHLDIDHNKKIDFTEFLLMVFKLAQAYYESTRKENLPISGHK 100
101 HRKHSHHDKHEDNKQEENKENRKRPSSLERRNNRKGNKGRSKSPRETGGK 150
151 RHESSSEKKERKGYSPTHREEEYGKNHHNSSKKEKNKTENTRLGDNRKRL 200
201 SERLEEKEDNEEGVYDYENTGRMTQKWIQSGHIATYYTIQDEAYDTTDSL 250
251 LEENKIYERSRSSDGKSSSQVNRSRHENTSQVPLQESRTRKRRGSRVSQD 300
301 RDSEGHSEDSERHSGSASRNHHGSAWEQSRDGSRHPRSHDEDRASHGHSA 350
351 DSSRQSGTRHAETSSRGQTASSHEQARSSPGERHGSGHQQSADSSRHSAT 400
401 GRGQASSAVSDRGHRGSSGSQASDSEGHSENSDTQSVSGHGKAGLRQQSH 450
451 QESTRGRSGERSGRSGSSLYQVSTHEQPDSAHGRTGTSTGGRQGSHHEQA 500
501 RDSSRHSASQEGQDTIRGHPGSSRGGRQGSHHEQSVNRSGHSGSHHSHTT 550
551 SQGRSDASHGQSGSRSASRQTRNEEQSGDGTRHSGSRHHEASSQADSSRH 600
601 SQVGQGQSSGPRTSRNQGSSVSQDSDSQGHSEDSERWSGSASRNHHGSAQ 650
651 EQSRDGSRHPRSHHEDRAGHGHSADSSRKSGTRHTQNSSSGQAASSHEQA 700
701 RSSAGERHGSRHQLQSADSSRHSGTGHGQASSAVRDSGHRGSSGSQATDS 750
751 EGHSEDSDTQSVSGHGQAGHHQQSHQESARDRSGERSRRSGSFLYQVSTH 800
801 KQSESSHGWTGPSTGVRQGSHHEQARDNSRHSASQDGQDTIRGHPGSSRR 850
851 GRQGSHHEQSVDRSGHSGSHHSHTTSQGRSDASRGQSGSRSASRTTRNEE 900
901 QSRDGSRHSGSRHHEASSHADISRHSQAGQGQSEGSRTSRRQGSSVSQDS 950
951 DSEGHSEDSERWSGSASRNHRGSAQEQSRHGSRHPRSHHEDRAGHGHSAD 1000
1001 SSRQSGTPHAETSSGGQAASSHEQARSSPGERHGSRHQQSADSSRHSGIP 1050
1051 RRQASSAVRDSGHWGSSGSQASDSEGHSEESDTQSVSGHGQDGPHQQSHQ 1100
1101 ESARDWSGGRSGRSGSFIYQVSTHEQSESAHGRTRTSTGRRQGSHHEQAR 1150
1151 DSSRHSASQEGQDTIRAHPGSRRGGRQGSHHEQSVDRSGHSGSHHSHTTS 1200
1201 QGRSDASHGQSGSRSASRQTRKDKQSGDGSRHSGSRHHEAASWADSSRHS 1250
1251 QVGQEQSSGSRTSRHQGSSVSQDSDSERHSDDSERLSGSASRNHHGSSRE 1300
1301 QSRDGSRHPGFHQEDRASHGHSADSSRQSGTHHTESSSHGQAVSSHEQAR 1350
1351 SSPGERHGSRHQQSADSSRHSGIGHRQASSAVRDSGHRGSSGSQVTNSEG 1400
1401 HSEDSDTQSVSAHGQAGPHQQSHKESARGQSGESSGRSRSFLYQVSSHEQ 1450
1451 SESTHGQTAPSTGGRQGSRHEQARNSSRHSASQDGQDTIRGHPGSSRGGR 1500
1501 QGSYHEQSVDRSGHSGYHHSHTTPQGRSDASHGQSGPRSASRQTRNEEQS 1550
1551 GDGSRHSGSRHHEPSTRAGSSRHSQVGQGESAGSKTSRRQGSSVSQDRDS 1600
1601 EGHSEDSERRSESASRNHYGSAREQSRHGSRNPRSHQEDRASHGHSAESS 1650
1651 RQSGTRHAETSSGGQAASSQEQARSSPGERHGSRHQQSADSSTDSGTGRR 1700
1701 QDSSVVGDSGNRGSSGSQASDSEGHSEESDTQSVSAHGQAGPHQQSHQES 1750
1751 TRGQSGERSGRSGSFLYQVSTHEQSESAHGRTGPSTGGRQRSRHEQARDS 1800
1801 SRHSASQEGQDTIRGHPGSSRGGRQGSHYEQSVDSSGHSGSHHSHTTSQE 1850
1851 RSDVSRGQSGSRSVSRQTRNEKQSGDGSRHSGSRHHEASSRADSSRHSQV 1900
1901 GQGQSSGPRTSRNQGSSVSQDSDSQGHSEDSERWSGSASRNHLGSAWEQS 1950
1951 RDGSRHPGSHHEDRAGHGHSADSSRQSGTRHTESSSRGQAASSHEQARSS 2000
2001 AGERHGSHHQLQSADSSRHSGIGHGQASSAVRDSGHRGYSGSQASDSEGH 2050
2051 SEDSDTQSVSAQGKAGPHQQSHKESARGQSGESSGRSGSFLYQVSTHEQS 2100
2101 ESTHGQSAPSTGGRQGSHYDQAQDSSRHSASQEGQDTIRGHPGPSRGGRQ 2150
2151 GSHQEQSVDRSGHSGSHHSHTTSQGRSDASRGQSGSRSASRKTYDKEQSG 2200
2201 DGSRHSGSHHHEASSWADSSRHSLVGQGQSSGPRTSRPRGSSVSQDSDSE 2250
2251 GHSEDSERRSGSASRNHHGSAQEQSRDGSRHPRSHHEDRAGHGHSAESSR 2300
2301 QSGTHHAENSSGGQAASSHEQARSSAGERHGSHHQQSADSSRHSGIGHGQ 2350
2351 ASSAVRDSGHRGSSGSQASDSEGHSEDSDTQSVSAHGQAGPHQQSHQEST 2400
2401 RGRSAGRSGRSGSFLYQVSTHEQSESAHGRTGTSTGGRQGSHHKQARDSS 2450
2451 RHSTSQEGQDTIHGHPGSSSGGRQGSHYEQLVDRSGHSGSHHSHTTSQGR 2500
2501 SDASHGHSGSRSASRQTRNDEQSGDGSRHSGSRHHEASSRADSSGHSQVG 2550
2551 QGQSEGPRTSRNWGSSFSQDSDSQGHSEDSERWSGSASRNHHGSAQEQLR 2600
2601 DGSRHPRSHQEDRAGHGHSADSSRQSGTRHTQTSSGGQAASSHEQARSSA 2650
2651 GERHGSHHQQSADSSRHSGIGHGQASSAVRDSGHRGYSGSQASDNEGHSE 2700
2701 DSDTQSVSAHGQAGSHQQSHQESARGRSGETSGHSGSFLYQVSTHEQSES 2750
2751 SHGWTGPSTRGRQGSRHEQAQDSSRHSASQDGQDTIRGHPGSSRGGRQGY 2800
2801 HHEHSVDSSGHSGSHHSHTTSQGRSDASRGQSGSRSASRTTRNEEQSGDG 2850
2851 SRHSGSRHHEASTHADISRHSQAVQGQSEGSRRSRRQGSSVSQDSDSEGH 2900
2901 SEDSERWSGSASRNHHGSAQEQLRDGSRHPRSHQEDRAGHGHSADSSRQS 2950
2951 GTRHTQTSSGGQAASSHEQARSSAGERHGSHHQQSADSSRHSGIGHGQAS 3000
3001 SAVRDSGHRGYSGSQASDNEGHSEDSDTQSVSAHGQAGSHQQSHQESARG 3050
3051 RSGETSGHSGSFLYQVSTHEQSESSHGWTGPSTRGRQGSRHEQAQDSSRH 3100
3101 SASQYGQDTIRGHPGSSRGGRQGYHHEHSVDSSGHSGSHHSHTTSQGRSD 3150
3151 ASRGQSGSRSASRTTRNEEQSGDSSRHSVSRHHEASTHADISRHSQAVQG 3200
3201 QSEGSRRSRRQGSSVSQDSDSEGHSEDSERWSGSASRNHRGSVQEQSRHG 3250
3251 SRHPRSHHEDRAGHGHSADRSRQSGTRHAETSSGGQAASSHEQARSSPGE 3300
3301 RHGSRHQQSADSSRHSGIPRGQASSAVRDSRHWGSSGSQASDSEGHSEES 3350
3351 DTQSVSGHGQAGPHQQSHQESARDRSGGRSGRSGSFLYQVSTHEQSESAH 3400
3401 GRTRTSTGRRQGSHHEQARDSSRHSASQEGQDTIRGHPGSSRRGRQGSHY 3450
3451 EQSVDRSGHSGSHHSHTTSQGRSDASRGQSGSRSASRQTRNDEQSGDGSR 3500
3501 HSWSHHHEASTQADSSRHSQSGQGQSAGPRTSRNQGSSVSQDSDSQGHSE 3550
3551 DSERWSGSASRNHRGSAQEQSRDGSRHPTSHHEDRAGHGHSAESSRQSGT 3600
3601 HHAENSSGGQAASSHEQARSSAGERHGSHHQQSADSSRHSGIGHGQASSA 3650
3651 VRDSGHRGSSGSQASDSEGHSEDSDTQSVSAHGQAGPHQQSHQESTRGRS 3700
3701 AGRSGRSGSFLYQVSTHEQSESAHGRAGPSTGGRQGSRHEQARDSSRHSA 3750
3751 SQEGQDTIRGHPGSRRGGRQGSYHEQSVDRSGHSGSHHSHTTSQGRSDAS 3800
3801 HGQSGSRSASRETRNEEQSGDGSRHSGSRHHEASTQADSSRHSQSGQGES 3850
3851 AGSRRSRRQGSSVSQDSDSEAYPEDSERRSESASRNHHGSSREQSRDGSR 3900
3901 HPGSSHRDTASHVQSSPVQSDSSTAKEHGHFSSLSQDSAYHSGIQSRGSP 3950
3951 HSSSSYHYQSEGTERQKGQSGLVWRHGSYGSADYDYGESGFRHSQHGSVS 4000
4001 YNSNPVVFKERSDICKASAFGKDHPRYYATYINKDPGLCGHSSDISKQLG 4050
4051 FSQSQRYYYYE 4061

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.