 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P21359 from www.uniprot.org...
The NucPred score for your sequence is 0.89 (see score help below)
1 MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTEHNKECLINISKYK 50
51 FSLVISGLTTILKNVNNMRIFGEAAEKNLYLSQLIILDTLEKCLAGQPKD 100
101 TMRLDETMLVKQLLPEICHFLHTCREGNQHAAELRNSASGVLFSLSCNNF 150
151 NAVFSRISTRLQELTVCSEDNVDVHDIELLQYINVDCAKLKRLLKETAFK 200
201 FKALKKVAQLAVINSLEKAFWNWVENYPDEFTKLYQIPQTDMAECAEKLF 250
251 DLVDGFAESTKRKAAVWPLQIILLILCPEIIQDISKDVVDENNMNKKLFL 300
301 DSLRKALAGHGGSRQLTESAAIACVKLCKASTYINWEDNSVIFLLVQSMV 350
351 VDLKNLLFNPSKPFSRGSQPADVDLMIDCLVSCFRISPHNNQHFKICLAQ 400
401 NSPSTFHYVLVNSLHRIITNSALDWWPKIDAVYCHSVELRNMFGETLHKA 450
451 VQGCGAHPAIRMAPSLTFKEKVTSLKFKEKPTDLETRSYKYLLLSMVKLI 500
501 HADPKLLLCNPRKQGPETQGSTAELITGLVQLVPQSHMPEIAQEAMEALL 550
551 VLHQLDSIDLWNPDAPVETFWEISSQMLFYICKKLTSHQMLSSTEILKWL 600
601 REILICRNKFLLKNKQADRSSCHFLLFYGVGCDIPSSGNTSQMSMDHEEL 650
651 LRTPGASLRKGKGNSSMDSAAGCSGTPPICRQAQTKLEVALYMFLWNPDT 700
701 EAVLVAMSCFRHLCEEADIRCGVDEVSVHNLLPNYNTFMEFASVSNMMST 750
751 GRAALQKRVMALLRRIEHPTAGNTEAWEDTHAKWEQATKLILNYPKAKME 800
801 DGQAAESLHKTIVKRRMSHVSGGGSIDLSDTDSLQEWINMTGFLCALGGV 850
851 CLQQRSNSGLATYSPPMGPVSERKGSMISVMSSEGNADTPVSKFMDRLLS 900
901 LMVCNHEKVGLQIRTNVKDLVGLELSPALYPMLFNKLKNTISKFFDSQGQ 950
951 VLLTDTNTQFVEQTIAIMKNLLDNHTEGSSEHLGQASIETMMLNLVRYVR 1000
1001 VLGNMVHAIQIKTKLCQLVEVMMARRDDLSFCQEMKFRNKMVEYLTDWVM 1050
1051 GTSNQAADDDVKCLTRDLDQASMEAVVSLLAGLPLQPEEGDGVELMEAKS 1100
1101 QLFLKYFTLFMNLLNDCSEVEDESAQTGGRKRGMSRRLASLRHCTVLAMS 1150
1151 NLLNANVDSGLMHSIGLGYHKDLQTRATFMEVLTKILQQGTEFDTLAETV 1200
1201 LADRFERLVELVTMMGDQGELPIAMALANVVPCSQWDELARVLVTLFDSR 1250
1251 HLLYQLLWNMFSKEVELADSMQTLFRGNSLASKIMTFCFKVYGATYLQKL 1300
1301 LDPLLRIVITSSDWQHVSFEVDPTRLEPSESLEENQRNLLQMTEKFFHAI 1350
1351 ISSSSEFPPQLRSVCHCLYQATCHSLLNKATVKEKKENKKSVVSQRFPQN 1400
1401 SIGAVGSAMFLRFINPAIVSPYEAGILDKKPPPRIERGLKLMSKILQSIA 1450
1451 NHVLFTKEEHMRPFNDFVKSNFDAARRFFLDIASDCPTSDAVNHSLSFIS 1500
1501 DGNVLALHRLLWNNQEKIGQYLSSNRDHKAVGRRPFDKMATLLAYLGPPE 1550
1551 HKPVADTHWSSLNLTSSKFEEFMTRHQVHEKEEFKALKTLSIFYQAGTSK 1600
1601 AGNPIFYYVARRFKTGQINGDLLIYHVLLTLKPYYAKPYEIVVDLTHTGP 1650
1651 SNRFKTDFLSKWFVVFPGFAYDNVSAVYIYNCNSWVREYTKYHERLLTGL 1700
1701 KGSKRLVFIDCPGKLAEHIEHEQQKLPAATLALEEDLKVFHNALKLAHKD 1750
1751 TKVSIKVGSTAVQVTSAERTKVLGQSVFLNDIYYASEIEEICLVDENQFT 1800
1801 LTIANQGTPLTFMHQECEAIVQSIIHIRTRWELSQPDSIPQHTKIRPKDV 1850
1851 PGTLLNIALLNLGSSDPSLRSAAYNLLCALTCTFNLKIEGQLLETSGLCI 1900
1901 PANNTLFIVSISKTLAANEPHLTLEFLEECISGFSKSSIELKHLCLEYMT 1950
1951 PWLSNLVRFCKHNDDAKRQRVTAILDKLITMTINEKQMYPSIQAKIWGSL 2000
2001 GQITDLLDVVLDSFIKTSATGGLGSIKAEVMADTAVALASGNVKLVSSKV 2050
2051 IGRMCKIIDKTCLSPTPTLEQHLMWDDIAILARYMLMLSFNNSLDVAAHL 2100
2101 PYLFHVVTFLVATGPLSLRASTHGLVINIIHSLCTCSQLHFSEETKQVLR 2150
2151 LSLTEFSLPKFYLLFGISKVKSAAVIAFRSSYRDRSFSPGSYERETFALT 2200
2201 SLETVTEALLEIMEACMRDIPTCKWLDQWTELAQRFAFQYNPSLQPRALV 2250
2251 VFGCISKRVSHGQIKQIIRILSKALESCLKGPDTYNSQVLIEATVIALTK 2300
2301 LQPLLNKDSPLHKALFWVAVAVLQLDEVNLYSAGTALLEQNLHTLDSLRI 2350
2351 FNDKSPEEVFMAIRNPLEWHCKQMDHFVGLNFNSNFNFALVGHLLKGYRH 2400
2401 PSPAIVARTVRILHTLLTLVNKHRNCDKFEVNTQSVAYLAALLTVSEEVR 2450
2451 SRCSLKHRKSLLLTDISMENVPMDTYPIHHGDPSYRTLKETQPWSSPKGS 2500
2501 EGYLAATYPTVGQTSPRARKSMSLDMGQPSQANTKKLLGTRKSFDHLISD 2550
2551 TKAPKRQEMESGITTPPKMRRVAETDYEMETQRISSSQQHPHLRKVSVSE 2600
2601 SNVLLDEEVLTDPKIQALLLTVLATLVKYTTDEFDQRILYEYLAEASVVF 2650
2651 PKVFPVVHNLLDSKINTLLSLCQDPNLLNPIHGIVQSVVYHEESPPQYQT 2700
2701 SYLQSFGFNGLWRFAGPFSKQTQIPDYAELIVKFLDALIDTYLPGIDEET 2750
2751 SEESLLTPTSPYPPALQSQLSITANLNLSNSMTSLATSQHSPGIDKENVE 2800
2801 LSPTTGHCNSGRTRHGSASQVQKQRSAGSFKRNSIKKIV 2839
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.