SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P22147 from www.uniprot.org...

The NucPred score for your sequence is 0.91 (see score help below)

   1  MGIPKFFRYISERWPMILQLIEGTQIPEFDNLYLDMNSILHNCTHGNDDD    50
51 VTKRLTEEEVFAKICTYIDHLFQTIKPKKIFYMAIDGVAPRAKMNQQRAR 100
101 RFRTAMDAEKALKKAIENGDEIPKGEPFDSNSITPGTEFMAKLTKNLQYF 150
151 IHDKISNDSKWREVQIIFSGHEVPGEGEHKIMNFIRHLKSQKDFNQNTRH 200
201 CIYGLDADLIMLGLSTHGPHFALLREEVTFGRRNSEKKSLEHQNFYLLHL 250
251 SLLREYMELEFKEIADEMQFEYNFERILDDFILVMFVIGNDFLPNLPDLH 300
301 LNKGAFPVLLQTFKEALLHTDGYINEHGKINLKRLGVWLNYLSQFELLNF 350
351 EKDDIDVEWFNKQLENISLEGERKRQRVGKKLLVKQQKKLIGSIKPWLME 400
401 QLQEKLSPDLPDEEIPTLELPKDLDMKDHLEFLKEFAFDLGLFITHSKSK 450
451 GSYSLKMDLDSINPDETEEEFQNRVNSIRKTIKKYQNAIIVEDKEELETE 500
501 KTIYNERFERWKHEYYHDKLKFTTDSEEKVRDLAKDYVEGLQWVLYYYYR 550
551 GCPSWSWYYPHHYAPRISDLAKGLDQDIEFDLSKPFTPFQQLMAVLPERS 600
601 KNLIPPAFRPLMYDEQSPIHDFYPAEVQLDKNGKTADWEAVVLISFVDEK 650
651 RLIEAMQPYLRKLSPEEKTRNQFGKDLIYSFNPQVDNLYKSPLGGIFSDI 700
701 EHNHCVEKEYITIPLDSSEIRYGLLPNAKLGAEMLAGFPTLLSLPFTSSL 750
751 EYNETMVFQQPSKQQSMVLQITDIYKTNNVTLEDFSKRHLNKVIYTRWPY 800
801 LRESKLVSLTDGKTIYEYQESNDKKKFGFITKPAETQDKKLFNSLKNSML 850
851 RMYAKQKAVKIGPMEAIATVFPVTGLVRDSDGGYIKTFSPTPDYYPLQLV 900
901 VESVVNEDERYKERGPIPIEEEFPLNSKVIFLGDYAYGGETTIDGYSSDR 950
951 RLKITVEKKFLDSEPTIGKERLQMDHQAVKYYPSYIVSKNMHLHPLFLSK 1000
1001 ITSKFMITDATGKHINVGIPVKFEARHQKVLGYARRNPRGWEYSNLTLNL 1050
1051 LKEYRQTFPDFFFRLSKVGNDIPVLEDLFPDTSTKDAMNLLDGIKQWLKY 1100
1101 VSSKFIAVSLESDSLTKTSIAAVEDHIMKYAANIEGHERKQLAKVPREAV 1150
1151 LNPRSSFALLRSQKFDLGDRVVYIQDSGKVPIFSKGTVVGYTTLSSSLSI 1200
1201 QVLFDHEIVAGNNFGGRLRTNRGLGLDASFLLNITNRQFIYHSKASKKAL 1250
1251 EKKKQSNNRNNNTKTAHKTPSKQQSEEKLRKERAHDLLNFIKKDTNEKNS 1300
1301 ESVDNKSMGSQKDSKPAKKVLLKRPAQKSSENVQVDLANFEKAPLDNPTV 1350
1351 AGSIFNAVANQYSDGIGSNLNIPTPPHPMNVVGGPIPGANDVADVGLPYN 1400
1401 IPPGFMTHPNGLHPLHPHQMPYPNMNGMSIPPPAPHGFGQPISFPPPPPM 1450
1451 TNVSDQGSRIVVNEKESQDLKKFINGKQHSNGSTIGGETKNSRKGEIKPS 1500
1501 SGTNSTECQSPKSQSNAADRDNKKDEST 1528

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.