 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P22219 from www.uniprot.org...
The NucPred score for your sequence is 0.79 (see score help below)
1 MGAQLSLVVQASPSIAIFSYIDVLEEVHYVSQLNSSRFLKTCKALDPNGE 50
51 IVIKVFIKPKDQYSLRPFLQRIRAQSFKLGQLPHVLNYSKLIETNRAGYM 100
101 IRQHLKNNLYDRLSLRPYLQDIELKFIAFQLLNALKDIHNLNIVHGDIKT 150
151 ENILVTSWNWCILTDFAAFIKPVYLPEDNPGEFLFYFDTSKRRTCYLAPE 200
201 RFNSKLYQDGKSNNGRLTKEMDIFSLGCVIAEIFAEGRPIFNLSQLFKYK 250
251 SNSYDVNREFLMEEMNSTDLRNLVLDMIQLDPSKRLSCDELLNKYRGIFF 300
301 PDYFYTFIYDYFRNLVTMTTSTPISDNTCTNSTLEDNVKLLDETTEKIYR 350
351 DFSQICHCLDFPLIKDGGEIGSDPPILESYKIEIEISRFLNTNLYFPQNY 400
401 HLVLQQFTKVSEKIKSVKEECALLFISYLSHSIRSIVSTATKLKNLELLA 450
451 VFAQFVSDENKIDRVVPYFVCCFEDSDQDVQALSLLTLIQVLTSVRKLNQ 500
501 LNENIFVDYLLPRLKRLLISNRQNTNYLRIVFANCLSDLAIIINRFQEFT 550
551 FAQHCNDNSMDNNTEIMESSTKYSAKLIQSVEDLTVSFLTDNDTYVKMAL 600
601 LQNILPLCKFFGRERTNDIILSHLITYLNDKDPALRVSLIQTISGISILL 650
651 GTVTLEQYILPLLIQTITDSEELVVISVLQSLKSLFKTGLIRKKYYIDIS 700
701 KTTSPLLLHPNNWIRQFTLMIIIEIINKLSKAEVYCILYPIIRPFFEFDV 750
751 EFNFKSMISCCKQPVSRSVYNLLCSWSVRASKSLFWKKIITNHVDSFGNN 800
801 RIEFITKNYSSKNYGFNKRDTKSSSSLKGIKTSSTVYSHDNKEIPLTAED 850
851 RNWIDKFHIIGLTEKDIWKIVALRGYVIRTARVMAANPDFPYNNSNYRPL 900
901 VQNSPPNLNLTNIMPRNIFFDVEFAEESTSEGQDSNLENQQIYKYDESEK 950
951 DSNKLNINGSKQLSTVMDINGSLIFKNKSIATTTSNLKNVFVQLEPTSYH 1000
1001 MHSPNHGLKDNANVKPERKVVVSNSYEGDVESIEKFLSTFKILPPLRDYK 1050
1051 EFGPIQEIVRSPNMGNLRGKLIATLMENEPNSITSSAVSPGETPYLITGS 1100
1101 DQGVIKIWNLKEIIVGEVYSSSLTYDCSSTVTQITMIPNFDAFAVSSKDG 1150
1151 QIIVLKVNHYQQESEVKFLNCECIRKINLKNFGKNEYAVRMRAFVNEEKS 1200
1201 LLVALTNLSRVIIFDIRTLERLQIIENSPRHGAVSSICIDEECCVLILGT 1250
1251 TRGIIDIWDIRFNVLIRSWSFGDHAPITHVEVCQFYGKNSVIVVGGSSKT 1300
1301 FLTIWNFVKGHCQYAFINSDEQPSMEHFLPIEKGLEELNFCGIRSLNALS 1350
1351 TISVSNDKILLTDEATSSIVMFSLNELSSSKAVISPSRFSDVFIPTQVTA 1400
1401 NLTMLLRKMKRTSTHSVDDSLYHHDIINSISTCEVDETPLLVACDNSGLI 1450
1451 GIFQ 1454
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.