SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P22293 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MSVALADEPLIDLEEDLEDGEIDDDEEDEQQSSKIQVQKKTFVGDDDVQF    50
51 VGVEAKNQNDDEDVVYVGPSTDAVCLQNSNSTKSKKPRPLEDDHASSIEL 100
101 AIANALKKKGIEPPMPRMRSSNQDTSDQSLEGSGEGLATANPLLQSTRSS 150
151 RRRKRKKEREREQKKDKEQQNRSRRDENDVSVVPGGVEDMDEYEMMNVRG 200
201 GSPPPGGAAPPLSSCGQRFSGADWDMDDGSAATGAAGLGAGGGGGYNSHS 250
251 SYDSYSDEETNGPGLMNQRRRTRRDNEKEHQRGVNNRKRRDRDRLEGGLA 300
301 GSGSKRNRRDSGEGGGGGQEKMGGSNRVEPRKLELCKFYLMDCCAKRDKC 350
351 SYMHKEFPCKYYYLGMDCYAGDDCLFYHGEPLSEQLRNVLLKHMETAPKE 400
401 ILGDFKRISRDIAIVQMTRRHEQLCDQLNRENTWNSIGCGLMGKRQDHQM 450
451 QQQQQQLQHQQLQQQQEQQQTQQQAAADGGGCIPSLLDMVINPPLSENKR 500
501 KSRWTEKMGAKAAAGAAGSSERDSTSPDAKPLPPHLDLANLSHVLSAENM 550
551 AKLNKLGITNLEQMLQVPFGQLTEAGLTLVEIGEIQRKAEDAKPQTQAEL 600
601 ESSTPPSKRETEANNSNSKSNGLIMVDYTQYLKDAHVSFSGNDPLDDDRD 650
651 DDEQLIIDDGNDSTAEEDQQPKKAKAPPAATHESSTEEAPLPSVFDLPSF 700
701 MNNMLGQGSSARQLLPASATSPNQENAHLPGGDQSTHKSAPIGGGTSTNV 750
751 LGRILFGDKQSDPEARAAFYRDIIRNPFKAHSGDGDVDSSNENSNSNSHS 800
801 LTPTPTPEPGSQSPKPEDHDQDMPELPVIAPALPPTTPSLYVRRSMYDFD 850
851 PVKEQEHGRQELLTEEKEQYQRDTDMRLPFEPMKHYMPATEIDAAIFSHT 900
901 PIRWQLHEVTIEESSYAQIRASALHKEQRELRDPRMRRILGLPETPDNSG 950
951 PLGSVPIMGPSSFSVDNIARCATTIASPDLETAVRDSTPSSPPPSVVNLP 1000
1001 SMSVPPPSMRVPPPNIQVEKPTVRTDPRRDPRRAVLQAPTKGASTANTTA 1050
1051 PNASGGSKQISEIRSLLQVSNWYNNLGTNNKIMVNQQLALVFTELKKFHQ 1100
1101 LPNDAPKIFDVSFIVNNTTLQQIFAKLFIFVDDNGEVVQIPEEPNGNGAA 1150
1151 LGGGGDSGGGVGGGGGGGGVVLPNLSQPPPNLSQMLRLPPPNIRMLRMSG 1200
1201 MMMQMGNVGPPFNQPPPRGGLMGMPPNGNGLNQGVGNLGGLGQLGINQGG 1250
1251 GPVPNGNPFNPFGGNNGGGAGVMNNMNSMGNMGMGFNNFNNNGGRGGHFP 1300
1301 GGGSGGNGNGNNRNQRGGNHRNRNI 1325

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.