 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P24043 from www.uniprot.org...
The NucPred score for your sequence is 0.71 (see score help below)
1 MPGAAGVLLLLLLSGGLGGVQAQRPQQQRQSQAHQQRGLFPAVLNLASNA 50
51 LITTNATCGEKGPEMYCKLVEHVPGQPVRNPQCRICNQNSSNPNQRHPIT 100
101 NAIDGKNTWWQSPSIKNGIEYHYVTITLDLQQVFQIAYVIVKAANSPRPG 150
151 NWILERSLDDVEYKPWQYHAVTDTECLTLYNIYPRTGPPSYAKDDEVICT 200
201 SFYSKIHPLENGEIHISLINGRPSADDPSPELLEFTSARYIRLRFQRIRT 250
251 LNADLMMFAHKDPREIDPIVTRRYYYSVKDISVGGMCICYGHARACPLDP 300
301 ATNKSRCECEHNTCGDSCDQCCPGFHQKPWRAGTFLTKTECEACNCHGKA 350
351 EECYYDENVARRNLSLNIRGKYIGGGVCINCTQNTAGINCETCTDGFFRP 400
401 KGVSPNYPRPCQPCHCDPIGSLNEVCVKDEKHARRGLAPGSCHCKTGFGG 450
451 VSCDRCARGYTGYPDCKACNCSGLGSKNEDPCFGPCICKENVEGGDCSRC 500
501 KSGFFNLQEDNWKGCDECFCSGVSNRCQSSYWTYGKIQDMSGWYLTDLPG 550
551 RIRVAPQQDDLDSPQQISISNAEARQALPHSYYWSAPAPYLGNKLPAVGG 600
601 QLTFTISYDLEEEEEDTERVLQLMIILEGNDLSISTAQDEVYLHPSEEHT 650
651 NVLLLKEESFTIHGTHFPVRRKEFMTVLANLKRVLLQITYSFGMDAIFRL 700
701 SSVNLESAVSYPTDGSIAAAVEVCQCPPGYTGSSCESCWPRHRRVNGTIF 750
751 GGICEPCQCFGHAESCDDVTGECLNCKDHTGGPYCDKCLPGFYGEPTKGT 800
801 SEDCQPCACPLNIPSNNFSPTCHLDRSLGLICDGCPVGYTGPRCERCAEG 850
851 YFGQPSVPGGSCQPCQCNDNLDFSIPGSCDSLSGSCLICKPGTTGRYCEL 900
901 CADGYFGDAVDAKNCQPCRCNAGGSFSEVCHSQTGQCECRANVQGQRCDK 950
951 CKAGTFGLQSARGCVPCNCNSFGSKSFDCEESGQCWCQPGVTGKKCDRCA 1000
1001 HGYFNFQEGGCTACECSHLGNNCDPKTGRCICPPNTIGEKCSKCAPNTWG 1050
1051 HSITTGCKACNCSTVGSLDFQCNVNTGQCNCHPKFSGAKCTECSRGHWNY 1100
1101 PRCNLCDCFLPGTDATTCDSETKKCSCSDQTGQCTCKVNVEGIHCDRCRP 1150
1151 GKFGLDAKNPLGCSSCYCFGTTTQCSEAKGLIRTWVTLKAEQTILPLVDE 1200
1201 ALQHTTTKGIVFQHPEIVAHMDLMREDLHLEPFYWKLPEQFEGKKLMAYG 1250
1251 GKLKYAIYFEAREETGFSTYNPQVIIRGGTPTHARIIVRHMAAPLIGQLT 1300
1301 RHEIEMTEKEWKYYGDDPRVHRTVTREDFLDILYDIHYILIKATYGNFMR 1350
1351 QSRISEISMEVAEQGRGTTMTPPADLIEKCDCPLGYSGLSCEACLPGFYR 1400
1401 LRSQPGGRTPGPTLGTCVPCQCNGHSSLCDPETSICQNCQHHTAGDFCER 1450
1451 CALGYYGIVKGLPNDCQQCACPLISSSNNFSPSCVAEGLDDYRCTACPRG 1500
1501 YEGQYCERCAPGYTGSPGNPGGSCQECECDPYGSLPVPCDPVTGFCTCRP 1550
1551 GATGRKCDGCKHWHAREGWECVFCGDECTGLLLGDLARLEQMVMSINLTG 1600
1601 PLPAPYKMLYGLENMTQELKHLLSPQRAPERLIQLAEGNLNTLVTEMNEL 1650
1651 LTRATKVTADGEQTGQDAERTNTRAKSLGEFIKELARDAEAVNEKAIKLN 1700
1701 ETLGTRDEAFERNLEGLQKEIDQMIKELRRKNLETQKEIAEDELVAAEAL 1750
1751 LKKVKKLFGESRGENEEMEKDLREKLADYKNKVDDAWDLLREATDKIREA 1800
1801 NRLFAVNQKNMTALEKKKEAVESGKRQIENTLKEGNDILDEANRLADEIN 1850
1851 SIIDYVEDIQTKLPPMSEELNDKIDDLSQEIKDRKLAEKVSQAESHAAQL 1900
1901 NDSSAVLDGILDEAKNISFNATAAFKAYSNIKDYIDEAEKVAKEAKDLAH 1950
1951 EATKLATGPRGLLKEDAKGCLQKSFRILNEAKKLANDVKENEDHLNGLKT 2000
2001 RIENADARNGDLLRTLNDTLGKLSAIPNDTAAKLQAVKDKARQANDTAKD 2050
2051 VLAQITELHQNLDGLKKNYNKLADSVAKTNAVVKDPSKNKIIADADATVK 2100
2101 NLEQEADRLIDKLKPIKELEDNLKKNISEIKELINQARKQANSIKVSVSS 2150
2151 GGDCIRTYKPEIKKGSYNNIVVNVKTAVADNLLFYLGSAKFIDFLAIEMR 2200
2201 KGKVSFLWDVGSGVGRVEYPDLTIDDSYWYRIVASRTGRNGTISVRALDG 2250
2251 PKASIVPSTHHSTSPPGYTILDVDANAMLFVGGLTGKLKKADAVRVITFT 2300
2301 GCMGETYFDNKPIGLWNFREKEGDCKGCTVSPQVEDSEGTIQFDGEGYAL 2350
2351 VSRPIRWYPNISTVMFKFRTFSSSALLMYLATRDLRDFMSVELTDGHIKV 2400
2401 SYDLGSGMASVVSNQNHNDGKWKSFTLSRIQKQANISIVDIDTNQEENIA 2450
2451 TSSSGNNFGLDLKADDKIYFGGLPTLRNLSMKARPEVNLKKYSGCLKDIE 2500
2501 ISRTPYNILSSPDYVGVTKGCSLENVYTVSFPKPGFVELSPVPIDVGTEI 2550
2551 NLSFSTKNESGIILLGSGGTPAPPRRKRRQTGQAYYAILLNRGRLEVHLS 2600
2601 TGARTMRKIVIRPEPNLFHDGREHSVHVERTRGIFTVQVDENRRYMQNLT 2650
2651 VEQPIEVKKLFVGGAPPEFQPSPLRNIPPFEGCIWNLVINSVPMDFARPV 2700
2701 SFKNADIGRCAHQKLREDEDGAAPAEIVIQPEPVPTPAFPTPTPVLTHGP 2750
2751 CAAESEPALLIGSKQFGLSRNSHIAIAFDDTKVKNRLTIELEVRTEAESG 2800
2801 LLFYMARINHADFATVQLRNGLPYFSYDLGSGDTHTMIPTKINDGQWHKI 2850
2851 KIMRSKQEGILYVDGASNRTISPKKADILDVVGMLYVGGLPINYTTRRIG 2900
2901 PVTYSIDGCVRNLHMAEAPADLEQPTSSFHVGTCFANAQRGTYFDGTGFA 2950
2951 KAVGGFKVGLDLLVEFEFRTTTTTGVLLGISSQKMDGMGIEMIDEKLMFH 3000
3001 VDNGAGRFTAVYDAGVPGHLCDGQWHKVTANKIKHRIELTVDGNQVEAQS 3050
3051 PNPASTSADTNDPVFVGGFPDDLKQFGLTTSIPFRGCIRSLKLTKGTGKP 3100
3101 LEVNFAKALELRGVQPVSCPAN 3122
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.