| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P24384 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MSDISKLIGAIVGSDDPVIIEFVLNIINKSGNLQEFIRNIQKLDAGISYE 50
51 DSIKMYNAFLGKQEEEKVRNKVKSSPLSQKINQVLKDDVNLDDPVVTEFV 100
101 LSILNKSKSITEFQEQLNLMQSGLDNETIFKIYQIASPPVMKEEVSVLPS 150
151 TKIPAKIEAKIEEEVQKIESLDPSPVLHKVYEGKVRNITTFGCFVQIFGT 200
201 RMKNCDGLVHISEMSDQRTLDPHDVVRQGQHIFVEVIKIQNNGKISLSMK 250
251 NIDQHSGEIRKRNTESVEDRGRSNDAHTSRNMKNKIKRRALTSPERWEIR 300
301 QLIASGAASIDDYPELKDEIPINTSYLTAKRDDGSIVNGNTEKVDSKLEE 350
351 QQRDETDEIDVELNTDDGPKFLKDQQVKGAKKYEMPKITKVPRGFMNRSA 400
401 INGSNAIRDHREEKLRKKREIEQQIRKQQSFDDPTKNKKDSRNEIQMLKN 450
451 QLIVTEWEKNRMNESISYGKRTSLPISAQRQTLPVYAMRSELIQAVRDNQ 500
501 FLVIVGETGSGKTTQITQYLDEEGFSNYGMIGCTQPRRVAAVSVAKRVAE 550
551 EVGCKVGHDVGYTIRFEDVTGPDTRIKYMTDGMLQREALLDPEMSKYSVI 600
601 MLDEAHERTVATDVLFALLKKAAIKRPELKVIVTSATLNSAKFSEYFLNC 650
651 PIINIPGKTFPVEVLYSQTPQMDYIEAALDCVIDIHINEGPGDILVFLTG 700
701 QEEIDSCCEILYDRVKTLGDSIGELLILPVYSALPSEIQSKIFEPTPKGS 750
751 RKVVFATNIAETSITIDGIYYVVDPGFAKINIYNARAGIEQLIVSPISQA 800
801 QANQRKGRAGRTGPGKCYRLYTESAFYNEMLENTVPEIQRQNLSHTILML 850
851 KAMGINDLLKFDFMDPPPKNLMLNALTELYHLQSLDDEGKLTNLGKEMSL 900
901 FPMDPTLSRSLLSSVDNQCSDEIVTIISMLSVQNVFYRPKDRQLEADSKK 950
951 AKFHHPYGDHLTLLNVYTRWQQANYSEQYCKTNFLHFRHLKRARDVKSQI 1000
1001 SMIFKKIGLKLISCHSDPDLIRKTFVSGFFMNAAKRDSQVGYKTINGGTE 1050
1051 VGIHPSSSLYGKEYEYVMYHSIVLTSREYMSQVTSIEPQWLLEVAPHFYK 1100
1101 AGDAESQSRKKAKIIPLHNKFAKDQNSWRLSSIRQSRERALGIKR 1145
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.