| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P25054 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MAAASYDQLLKQVEALKMENSNLRQELEDNSNHLTKLETEASNMKEVLKQ 50
51 LQGSIEDEAMASSGQIDLLERLKELNLDSSNFPGVKLRSKMSLRSYGSRE 100
101 GSVSSRSGECSPVPMGSFPRRGFVNGSRESTGYLEELEKERSLLLADLDK 150
151 EEKEKDWYYAQLQNLTKRIDSLPLTENFSLQTDMTRRQLEYEARQIRVAM 200
201 EEQLGTCQDMEKRAQRRIARIQQIEKDILRIRQLLQSQATEAERSSQNKH 250
251 ETGSHDAERQNEGQGVGEINMATSGNGQGSTTRMDHETASVLSSSSTHSA 300
301 PRRLTSHLGTKVEMVYSLLSMLGTHDKDDMSRTLLAMSSSQDSCISMRQS 350
351 GCLPLLIQLLHGNDKDSVLLGNSRGSKEARARASAALHNIIHSQPDDKRG 400
401 RREIRVLHLLEQIRAYCETCWEWQEAHEPGMDQDKNPMPAPVEHQICPAV 450
451 CVLMKLSFDEEHRHAMNELGGLQAIAELLQVDCEMYGLTNDHYSITLRRY 500
501 AGMALTNLTFGDVANKATLCSMKGCMRALVAQLKSESEDLQQVIASVLRN 550
551 LSWRADVNSKKTLREVGSVKALMECALEVKKESTLKSVLSALWNLSAHCT 600
601 ENKADICAVDGALAFLVGTLTYRSQTNTLAIIESGGGILRNVSSLIATNE 650
651 DHRQILRENNCLQTLLQHLKSHSLTIVSNACGTLWNLSARNPKDQEALWD 700
701 MGAVSMLKNLIHSKHKMIAMGSAAALRNLMANRPAKYKDANIMSPGSSLP 750
751 SLHVRKQKALEAELDAQHLSETFDNIDNLSPKASHRSKQRHKQSLYGDYV 800
801 FDTNRHDDNRSDNFNTGNMTVLSPYLNTTVLPSSSSSRGSLDSSRSEKDR 850
851 SLERERGIGLGNYHPATENPGTSSKRGLQISTTAAQIAKVMEEVSAIHTS 900
901 QEDRSSGSTTELHCVTDERNALRRSSAAHTHSNTYNFTKSENSNRTCSMP 950
951 YAKLEYKRSSNDSLNSVSSSDGYGKRGQMKPSIESYSEDDESKFCSYGQY 1000
1001 PADLAHKIHSANHMDDNDGELDTPINYSLKYSDEQLNSGRQSPSQNERWA 1050
1051 RPKHIIEDEIKQSEQRQSRNQSTTYPVYTESTDDKHLKFQPHFGQQECVS 1100
1101 PYRSRGANGSETNRVGSNHGINQNVSQSLCQEDDYEDDKPTNYSERYSEE 1150
1151 EQHEEEERPTNYSIKYNEEKRHVDQPIDYSLKYATDIPSSQKQSFSFSKS 1200
1201 SSGQSSKTEHMSSSSENTSTPSSNAKRQNQLHPSSAQSRSGQPQKAATCK 1250
1251 VSSINQETIQTYCVEDTPICFSRCSSLSSLSSAEDEIGCNQTTQEADSAN 1300
1301 TLQIAEIKEKIGTRSAEDPVSEVPAVSQHPRTKSSRLQGSSLSSESARHK 1350
1351 AVEFSSGAKSPSKSGAQTPKSPPEHYVQETPLMFSRCTSVSSLDSFESRS 1400
1401 IASSVQSEPCSGMVSGIISPSDLPDSPGQTMPPSRSKTPPPPPQTAQTKR 1450
1451 EVPKNKAPTAEKRESGPKQAAVNAAVQRVQVLPDADTLLHFATESTPDGF 1500
1501 SCSSSLSALSLDEPFIQKDVELRIMPPVQENDNGNETESEQPKESNENQE 1550
1551 KEAEKTIDSEKDLLDDSDDDDIEILEECIISAMPTKSSRKAKKPAQTASK 1600
1601 LPPPVARKPSQLPVYKLLPSQNRLQPQKHVSFTPGDDMPRVYCVEGTPIN 1650
1651 FSTATSLSDLTIESPPNELAAGEGVRGGAQSGEFEKRDTIPTEGRSTDEA 1700
1701 QGGKTSSVTIPELDDNKAEEGDILAECINSAMPKGKSHKPFRVKKIMDQV 1750
1751 QQASASSSAPNKNQLDGKKKKPTSPVKPIPQNTEYRTRVRKNADSKNNLN 1800
1801 AERVFSDNKDSKKQNLKNNSKVFNDKLPNNEDRVRGSFAFDSPHHYTPIE 1850
1851 GTPYCFSRNDSLSSLDFDDDDVDLSREKAELRKAKENKESEAKVTSHTEL 1900
1901 TSNQQSANKTQAIAKQPINRGQPKPILQKQSTFPQSSKDIPDRGAATDEK 1950
1951 LQNFAIENTPVCFSHNSSLSSLSDIDQENNNKENEPIKETEPPDSQGEPS 2000
2001 KPQASGYAPKSFHVEDTPVCFSRNSSLSSLSIDSEDDLLQECISSAMPKK 2050
2051 KKPSRLKGDNEKHSPRNMGGILGEDLTLDLKDIQRPDSEHGLSPDSENFD 2100
2101 WKAIQEGANSIVSSLHQAAAAACLSRQASSDSDSILSLKSGISLGSPFHL 2150
2151 TPDQEEKPFTSNKGPRILKPGEKSTLETKKIESESKGIKGGKKVYKSLIT 2200
2201 GKVRSNSEISGQMKQPLQANMPSISRGRTMIHIPGVRNSSSSTSPVSKKG 2250
2251 PPLKTPASKSPSEGQTATTSPRGAKPSVKSELSPVARQTSQIGGSSKAPS 2300
2301 RSGSRDSTPSRPAQQPLSRPIQSPGRNSISPGRNGISPPNKLSQLPRTSS 2350
2351 PSTASTKSSGSGKMSYTSPGRQMSQQNLTKQTGLSKNASSIPRSESASKG 2400
2401 LNQMNNGNGANKKVELSRMSSTKSSGSESDRSERPVLVRQSTFIKEAPSP 2450
2451 TLRRKLEESASFESLSPSSRPASPTRSQAQTPVLSPSLPDMSLSTHSSVQ 2500
2501 AGGWRKLPPNLSPTIEYNDGRPAKRHDIARSHSESPSRLPINRSGTWKRE 2550
2551 HSKHSSSLPRVSTWRRTGSSSSILSASSESSEKAKSEDEKHVNSISGTKQ 2600
2601 SKENQVSAKGTWRKIKENEFSPTNSTSQTVSSGATNGAESKTLIYQMAPA 2650
2651 VSKTEDVWVRIEDCPINNPRSGRSPTGNTPPVIDSVSEKANPNIKDSKDN 2700
2701 QAKQNVGNGSVPMRTVGLENRLNSFIQVDAPDQKGTEIKPGQNNPVPVSE 2750
2751 TNESSIVERTPFSSSSSSKHSSPSGTVAARVTPFNYNPSPRKSSADSTSA 2800
2801 RPSQIPTPVNNNTKKRDSKTDSTESSGTQSPKRHSGSYLVTSV 2843
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.