SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P26361 from www.uniprot.org...

The NucPred score for your sequence is 0.62 (see score help below)

   1  MQKSPLEKASFISKLFFSWTTPILRKGYRHHLELSDIYQAPSADSADHLS    50
51 EKLEREWDREQASKKNPQLIHALRRCFFWRFLFYGILLYLGEVTKAVQPV 100
101 LLGRIIASYDPENKVERSIAIYLGIGLCLLFIVRTLLLHPAIFGLHRIGM 150
151 QMRTAMFSLIYKKTLKLSSRVLDKISIGQLVSLLSNNLNKFDEGLALAHF 200
201 IWIAPLQVTLLMGLLWDLLQFSAFCGLGLLIILVIFQAILGKMMVKYRDQ 250
251 RAAKINERLVITSEIIDNIYSVKAYCWESAMEKMIENLREVELKMTRKAA 300
301 YMRFFTSSAFFFSGFFVVFLSVLPYTVINGIVLRKIFTTISFCIVLRMSV 350
351 TRQFPTAVQIWYDSFGMIRKIQDFLQKQEYKVLEYNLMTTGIIMENVTAF 400
401 WEEGFGELLEKVQQSNGDRKHSSDENNVSFSHLCLVGNPVLKNINLNIEK 450
451 GEMLAITGSTGSGKTSLLMLILGELEASEGIIKHSGRVSFCSQFSWIMPG 500
501 TIKENIIFGVSYDEYRYKSVVKACQLQQDITKFAEQDNTVLGEGGVTLSG 550
551 GQRARISLARAVYKDADLYLLDSPFGYLDVFTEEQVFESCVCKLMANKTR 600
601 ILVTSKMEHLRKADKILILHQGSSYFYGTFSELQSLRPDFSSKLMGYDTF 650
651 DQFTEERRSSILTETLRRFSVDDSSAPWSKPKQSFRQTGEVGEKRKNSIL 700
701 NSFSSVRKISIVQKTPLCIDGESDDLQEKRLSLVPDSEQGEAALPRSNMI 750
751 ATGPTFPGRRRQSVLDLMTFTPNSGSSNLQRTRTSIRKISLVPQISLNEV 800
801 DVYSRRLSQDSTLNITEEINEEDLKECFLDDVIKIPPVTTWNTYLRYFTL 850
851 HKGLLLVLIWCVLVFLVEVAASLFVLWLLKNNPVNSGNNGTKISNSSYVV 900
901 IITSTSFYYIFYIYVGVADTLLALSLFRGLPLVHTLITASKILHRKMLHS 950
951 ILHAPMSTISKLKAGGILNRFSKDIAILDDFLPLTIFDFIQLVFIVIGAI 1000
1001 IVVSALQPYIFLATVPGLVVFILLRAYFLHTAQQLKQLESEGRSPIFTHL 1050
1051 VTSLKGLWTLRAFRRQTYFETLFHKALNLHTANWFMYLATLRWFQMRIDM 1100
1101 IFVLFFIVVTFISILTTGEGEGTAGIILTLAMNIMSTLQWAVNSSIDTDS 1150
1151 LMRSVSRVFKFIDIQTEESMYTQIIKELPREGSSDVLVIKNEHVKKSDIW 1200
1201 PSGGEMVVKDLTVKYMDDGNAVLENISFSISPGQRVGLLGRTGSGKSTLL 1250
1251 SAFLRMLNIKGDIEIDGVSWNSVTLQEWRKAFGVITQKVFIFSGTFRQNL 1300
1301 DPNGKWKDEEIWKVADEVGLKSVIEQFPGQLNFTLVDGGYVLSHGHKQLM 1350
1351 CLARSVLSKAKIILLDEPSAHLDPITYQVIRRVLKQAFAGCTVILCEHRI 1400
1401 EAMLDCQRFLVIEESNVWQYDSLQALLSEKSIFQQAISSSEKMRFFQGRH 1450
1451 SSKHKPRTQITALKEETEEEVQETRL 1476

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.