SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P28167 from www.uniprot.org...

The NucPred score for your sequence is 0.95 (see score help below)

   1  MSSFDVETFNGKIVYNLDGSAHIIATDNTNGGGSGSGQNCYGSTTNSLKN    50
51 LSKDKGRGQEEKDIEHPSQYHREQSDNKRQEEAVDNRPGVESLGSACYKS 100
101 SPKIHSFRVVSAQDANSTCQDQIRAFKIQKPILMCFICKLSFGNVKSFSL 150
151 HANTEHRLNLEELDQQLLNREYSSAIIQRNMDEKPQISFLQPLANNDASA 200
201 DTNDTEKLQTATEGSDATLPSSPQPVFRNVSELEPENKQETEQNRLLNQD 250
251 REQEPESDQHTSSSKMAAPSAYIPLSSPKVAGKLTVKFGSLNSATAKTNN 300
301 LSKVSSTSSPPSTYASGEVLSPSTDNISNHKSTHCNQETEPPSSSSSEVE 350
351 MKIGSMSTSPQTNDSDVPCSGFLQMQHMTTGGAYTPQVSSFHASLAALAA 400
401 NESNDNRVKLITEFLQQQLQQHQSSLFPSPCPDHPDLNGVDCKTCELLDI 450
451 QQRSKSPSSSHHQFSQSLPQLQIQSQPQQTPHRSPCSNSVALPVSPSASS 500
501 VASVGNASTATSSFTIGACSEHINGRPQGVDCARCEMLLNSARLNSGVQM 550
551 STRNSCKTLKCPQCNWHYKYQETLEIHMREKHPDGESACGYCLAGQQHPR 600
601 LARGESYSCGYKPYRCEICNYSTTTKGNLSIHMQSDKHLNNMQELNSSQN 650
651 MVAAAAAAAVTGKLLLSSSSPQVTAACPSNSGSGAGSGSSNIVGGTASLS 700
701 GNATPSVTGANSSNANAGSNTNNAGTKPKPSFRCDICSYDTSVARNLRIH 750
751 MTSEKHTHNMAVLQNNIKHIQAFNFLQQQQQSGTGNIASHSSGSFMPEVA 800
801 LADLAYNQALMIQLLHQQQQHQQSANTKLSPSSSPVSTPDQFSFSPKPIK 850
851 LNHGTGAAMGIGMAMGMGMSHSNEVSCELSGDPHPLTKTDKWPMAFYSCL 900
901 VCDCYSTNNLDDLNQHLLLDRSRQSSSASSEIMVIHNNNYICRLCNYKTN 950
951 LKANFQLHSKTDKHLQKLNFINHIREGGPQNEYKMQYQQQQLAANVVQLK 1000
1001 CNCCDFHTNSIQKLSLHTQQMRHDTMRMIFQHLLYIVQQSEMHNKSSGSA 1050
1051 EDDPQCACPDEDQQLQLQSSKKLLLCQLCNFTAQNIHEMVQHVKGIRHLQ 1100
1101 VEQFICLQRRSENQEIPALNEVFKVTEWVMENEDVSLAPGLNLARTTTND 1150
1151 ATTDASYAAASSAAVPAIPDVSMFSPTSPSSCATSCDKNLSQIVLPNVNN 1200
1201 LGSGVPTTVFKCNLCEYFVQSKSEIAAHIETEHSCAESDEFITIPTNTAA 1250
1251 LQAFQTAVAAAALAAVHQRCAVINPPTQDTVDEDKDLDTNVSDGPVGIKQ 1300
1301 ERLEQEVDRTTSMDVTKDLASQATDFGAPESPKVAETEVGVQCPLCLENH 1350
1351 FREKQYLEDHLTSVHSVTRDGLSRLLLLVDQKALKKESTDIACPTDKAPY 1400
1401 ANTNALERAPTPIENTCNVSLIKSTSANPSQSVSLQGLSCQQCEASFKHE 1450
1451 EQLLKHAQQNQHFSLQNGEYLCLAASHISRPCFMTFRTIPTMISHFQDLH 1500
1501 MSLIISERHVYKYRCKQCSLAFKTQEKLTTHMLYHSMRDATKCSFCQRNF 1550
1551 RSTQALQKHMEQAHAEDGTPSTRTNSPQTPMLSTEETHKHLLAESHAVER 1600
1601 EVSGSDVSPIELETHLNKETRHLSPTPMSLDSQSHQKHLATFAALLKQQQ 1650
1651 CNSDAGGLHPEALSMSTGEMPPQLQGLQNLQHIQQHFGAVAAAAGLPINP 1700
1701 VDMLNIMQFHHLMSLNFMNLAPPLVFGANAAGNAVSGPSALNNSITTSTA 1750
1751 TSASGLGDTHLTSGVSSIPVDSGKATAVPPQTQLNANANSQQLASNQKRA 1800
1801 RTRITDDQLKILRAHFDINNSPSEESIMEMSQKANLPMKVVKHWFRNTLF 1850
1851 KERQRNKDSPYNFNNPPSTTLNLEEYERTGQAKVTPLNDTCSVAVTGPMT 1900
1901 SSTISLPPSGNINLSSKENATSKVLAAGKANASGPVTFSATVPVSTPLSR 1950
1951 PESTNSSGNISDYIGNNIFFGQLGSKEQILPYSLDGQIKSEPQDDMIGAT 2000
2001 DFAYQTKQHSSFSFLKQQQDLVDPPEQCLTNQNADTAQDQSLLAGSSLAS 2050
2051 NCQSQQQINIFETKSESGSSDVLSRPPSPNSGAAGNVYGSMNDLLNQQLE 2100
2101 NMGSNMGPPKKMQIVGKTFEKNVAPMVTSGSVSTQFESNSSNSSSSSSST 2150
2151 SGGKRANRTRFTDYQIKVLQEFFENNSYPKDSDLEYLSKLLLLSPRVIVV 2200
2201 WFQNARQKQRKIYENQPNNTLFENEETKKQNINYACKKCNLVFQRYYELI 2250
2251 RHQKNHCFKEENNKKSAKAQIAAAQIAQNLSSEDSNSSMDIHHVGICPPG 2300
2301 SAVASHTLSTPGSAAPLPGQYTQHSFGALPSPQHLFAKSSSLTDFSPSTT 2350
2351 PTPPQRERSNSLDQIQRPPKFDCDKCELNFNQLEKLREHQLLHLMNPGNI 2400
2401 CSDVGQNSNPEANFGPFGSILQSLQQAAAQQQQQHHQQPPTKKRKYSDCS 2450
2451 SNADEMQSLSELEASQKKHEYLYKYFMQNETSQEVKQQFLMQQQQKKLEQ 2500
2501 GNECDFELDFLTNFYQQNELKKVSNYDFLLQYYRTHEEAKSSQQHTFSSS 2550
2551 KKPTIEFLLQYYQLNESKKFFQLVASPQIIPDVPGYKPSLRIPKSTSDEA 2600
2601 PYIGETSLEQATELQREKQDEQLRIDRPSEENDLSMNKNKVENINNNNIN 2650
2651 VDQSNLTETNGGVPSVETKEECTQESSLIAMDDENKYLCTRSKQKDDKEK 2700
2701 SHYLHNLEDFLDATMIENNSQTLTFNDDEKACQKDELTQNSNAIEKRSSV 2750
2751 SPVNVSSKQNKRLRTTILPEQLNFLYECYQSESNPSRKMLEEISKKVNLK 2800
2801 KRVVQVWFQNSRAKDKKSRNQRHYAHISDDNSYDGSSGKEVYSDLRSNGI 2850
2851 TVDTDLETNLQDCQLCQVTQVNIRKHAFSVEHISKMKKLLEQTTELYAQS 2900
2901 NGSGSEDNDSDREKRFYNLSKAFLLQHVVTNATSHAIHTARQDSDVIAEG 2950
2951 NCILNYDTNGGDSKSHVQHNLPNEVVSEDARKIAGNQELMQQLFNRNHIT 3000
3001 VIGGK 3005

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.