| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P28706 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MGVSGLWDILEPVKRPVKLETLVNKRLAIDASIWIYQFLKAVRDKEGNQL 50
51 KSSHVVGFFRRICKLLFFGIKPVFVFDGGAPSLKRQTIQKRQARRLDREE 100
101 NATVTANKLLALQMRHQAMLLEENNKKATALANASVQNERQMPSSMTLDN 150
151 SEIKPVLNQRKNYLKPDPYQLPEMDVSFDKLGSSYDPRIMSQDELTQYVS 200
201 SFTKIEDINLFDFSNIDFDSELFQSLPDTDKYSILSAARLRSRLRMGLSS 250
251 EQLSEMFPNRMDFSRFQIERLKERNDLTQRLMDFTGMNEFGPSRVVSEKN 300
301 REYILVKNEGAEGGWALGVISGSTNNEPIIIDDEATKLSSNLIDEDEDEA 350
351 FYDVPLPSRSHSMNPRELVAAKLKEIKENSFSENQQSDEADYNVTDDLIL 400
401 QLATQQSLEENKKSKELFSLSASEFDKLNSEKKTFEILSTDIPAEDSMNS 450
451 LLNDEENLKLEHVGDVSNDSLAFAEKKHPENGTSIFMDALPSASREKKTN 500
501 DLIDPLPFQPMDWGKSIFFEKLKKPTETFMDSKTDIPSEAPDNSKLVEDT 550
551 NLHTINATVNIESDLDAAKPGIENPIISPLLPVKDDEKDLDLRELNPLEP 600
601 FENMKEQADDGTVTNPLNVSSDKAMSVYLLSSENAKDTGDIKSESIDAVL 650
651 PTLETSSPSLSIPTDFQKEASPNKGAAALSSKVEPEVVEKLLDEEEEEMI 700
701 IRMAEEEKEYDRFVSELNQRHETEEWNQEAFEKRLKELKNQKRSEKRDAD 750
751 EVTQVMIKECQELLRLFGLPYIVAPQEAEAQCSKLLELKLVDGIVTDDSD 800
801 VFLFGGTRVYRNMFNQNKFVELYLMDDMKREFNVNQMDLIKLAHLLGSDY 850
851 TMGLSRVGPVLALEILHEFPGDTGLFEFKKWFQRLSTGHASKNDVNTPVK 900
901 KRINKLVGKIILPSEFPNPLVDEAYLHPAVDDSKQSFQWGIPDLDELRQF 950
951 LMATVGWSKQRTNEVLLPVIQDMHKKQFVGTQSNLTQFFEGGNTNVYAPR 1000
1001 VAYHFKSKRLENALSSFKNQISNQSPMSEEIQADADAFGESKGSDELQSR 1050
1051 ILRRKKMMASKNSSDSDSDSEDNFLASLTPKTNSSSISIENLPRKTKLST 1100
1101 SLLKKPSKRRRK 1112
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.