SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P28827 from www.uniprot.org...

The NucPred score for your sequence is 0.62 (see score help below)

   1  MRGLGTCLATLAGLLLTAAGETFSGGCLFDEPYSTCGYSQSEGDDFNWEQ    50
51 VNTLTKPTSDPWMPSGSFMLVNASGRPEGQRAHLLLPQLKENDTHCIDFH 100
101 YFVSSKSNSPPGLLNVYVKVNNGPLGNPIWNISGDPTRTWNRAELAISTF 150
151 WPNFYQVIFEVITSGHQGYLAIDEVKVLGHPCTRTPHFLRIQNVEVNAGQ 200
201 FATFQCSAIGRTVAGDRLWLQGIDVRDAPLKEIKVTSSRRFIASFNVVNT 250
251 TKRDAGKYRCMIRTEGGVGISNYAELVVKEPPVPIAPPQLASVGATYLWI 300
301 QLNANSINGDGPIVAREVEYCTASGSWNDRQPVDSTSYKIGHLDPDTEYE 350
351 ISVLLTRPGEGGTGSPGPALRTRTKCADPMRGPRKLEVVEVKSRQITIRW 400
401 EPFGYNVTRCHSYNLTVHYCYQVGGQEQVREEVSWDTENSHPQHTITNLS 450
451 PYTNVSVKLILMNPEGRKESQELIVQTDEDLPGAVPTESIQGSTFEEKIF 500
501 LQWREPTQTYGVITLYEITYKAVSSFDPEIDLSNQSGRVSKLGNETHFLF 550
551 FGLYPGTTYSFTIRASTAKGFGPPATNQFTTKISAPSMPAYELETPLNQT 600
601 DNTVTVMLKPAHSRGAPVSVYQIVVEEERPRRTKKTTEILKCYPVPIHFQ 650
651 NASLLNSQYYFAAEFPADSLQAAQPFTIGDNKTYNGYWNTPLLPYKSYRI 700
701 YFQAASRANGETKIDCVQVATKGAATPKPVPEPEKQTDHTVKIAGVIAGI 750
751 LLFVIIFLGVVLVMKKRKLAKKRKETMSSTRQEMTVMVNSMDKSYAEQGT 800
801 NCDEAFSFMDTHNLNGRSVSSPSSFTMKTNTLSTSVPNSYYPDETHTMAS 850
851 DTSSLVQSHTYKKREPADVPYQTGQLHPAIRVADLLQHITQMKCAEGYGF 900
901 KEEYESFFEGQSAPWDSAKKDENRMKNRYGNIIAYDHSRVRLQTIEGDTN 950
951 SDYINGNYIDGYHRPNHYIATQGPMQETIYDFWRMVWHENTASIIMVTNL 1000
1001 VEVGRVKCCKYWPDDTEIYKDIKVTLIETELLAEYVIRTFAVEKRGVHEI 1050
1051 REIRQFHFTGWPDHGVPYHATGLLGFVRQVKSKSPPSAGPLVVHCSAGAG 1100
1101 RTGCFIVIDIMLDMAEREGVVDIYNCVRELRSRRVNMVQTEEQYVFIHDA 1150
1151 ILEACLCGDTSVPASQVRSLYYDMNKLDPQTNSSQIKEEFRTLNMVTPTL 1200
1201 RVEDCSIALLPRNHEKNRCMDILPPDRCLPFLITIDGESSNYINAALMDS 1250
1251 YKQPSAFIVTQHPLPNTVKDFWRLVLDYHCTSVVMLNDVDPAQLCPQYWP 1300
1301 ENGVHRHGPIQVEFVSADLEEDIISRIFRIYNAARPQDGYRMVQQFQFLG 1350
1351 WPMYRDTPVSKRSFLKLIRQVDKWQEEYNGGEGRTVVHCLNGGGRSGTFC 1400
1401 AISIVCEMLRHQRTVDVFHAVKTLRNNKPNMVDLLDQYKFCYEVALEYLN 1450
1451 SG 1452

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.