SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P29375 from www.uniprot.org...

The NucPred score for your sequence is 0.87 (see score help below)

   1  MAGVGPGGYAAEFVPPPECPVFEPSWEEFTDPLSFIGRIRPLAEKTGICK    50
51 IRPPKDWQPPFACEVKSFRFTPRVQRLNELEAMTRVRLDFLDQLAKFWEL 100
101 QGSTLKIPVVERKILDLYALSKIVASKGGFEMVTKEKKWSKVGSRLGYLP 150
151 GKGTGSLLKSHYERILYPYELFQSGVSLMGVQMPNLDLKEKVEPEVLSTD 200
201 TQTSPEPGTRMNILPKRTRRVKTQSESGDVSRNTELKKLQIFGAGPKVVG 250
251 LAMGTKDKEDEVTRRRKVTNRSDAFNMQMRQRKGTLSVNFVDLYVCMFCG 300
301 RGNNEDKLLLCDGCDDSYHTFCLIPPLPDVPKGDWRCPKCVAEECSKPRE 350
351 AFGFEQAVREYTLQSFGEMADNFKSDYFNMPVHMVPTELVEKEFWRLVSS 400
401 IEEDVIVEYGADISSKDFGSGFPVKDGRRKILPEEEEYALSGWNLNNMPV 450
451 LEQSVLAHINVDISGMKVPWLYVGMCFSSFCWHIEDHWSYSINYLHWGEP 500
501 KTWYGVPSHAAEQLEEVMRELAPELFESQPDLLHQLVTIMNPNVLMEHGV 550
551 PVYRTNQCAGEFVVTFPRAYHSGFNQGYNFAEAVNFCTADWLPIGRQCVN 600
601 HYRRLRRHCVFSHEELIFKMAADPECLDVGLAAMVCKELTLMTEEETRLR 650
651 ESVVQMGVLMSEEEVFELVPDDERQCSACRTTCFLSALTCSCNPERLVCL 700
701 YHPTDLCPCPMQKKCLRYRYPLEDLPSLLYGVKVRAQSYDTWVSRVTEAL 750
751 SANFNHKKDLIELRVMLEDAEDRKYPENDLFRKLRDAVKEAETCASVAQL 800
801 LLSKKQKHRQSPDSGRTRTKLTVEELKAFVQQLFSLPCVISQARQVKNLL 850
851 DDVEEFHERAQEAMMDETPDSSKLQMLIDMGSSLYVELPELPRLKQELQQ 900
901 ARWLDEVRLTLSDPQQVTLDVMKKLIDSGVGLAPHHAVEKAMAELQELLT 950
951 VSERWEEKAKVCLQARPRHSVASLESIVNEAKNIPAFLPNVLSLKEALQK 1000
1001 AREWTAKVEAIQSGSNYAYLEQLESLSAKGRPIPVRLEALPQVESQVAAA 1050
1051 RAWRERTGRTFLKKNSSHTLLQVLSPRTDIGVYGSGKNRRKKVKELIEKE 1100
1101 KEKDLDLEPLSDLEEGLEETRDTAMVVAVFKEREQKEIEAMHSLRAANLA 1150
1151 KMTMVDRIEEVKFCICRKTASGFMLQCELCKDWFHNSCVPLPKSSSQKKG 1200
1201 SSWQAKEVKFLCPLCMRSRRPRLETILSLLVSLQKLPVRLPEGEALQCLT 1250
1251 ERAMSWQDRARQALATDELSSALAKLSVLSQRMVEQAAREKTEKIISAEL 1300
1301 QKAAANPDLQGHLPSFQQSAFNRVVSSVSSSPRQTMDYDDEETDSDEDIR 1350
1351 ETYGYDMKDTASVKSSSSLEPNLFCDEEIPIKSEEVVTHMWTAPSFCAEH 1400
1401 AYSSASKSCSQGSSTPRKQPRKSPLVPRSLEPPVLELSPGAKAQLEELMM 1450
1451 VGDLLEVSLDETQHIWRILQATHPPSEDRFLHIMEDDSMEEKPLKVKGKD 1500
1501 SSEKKRKRKLEKVEQLFGEGKQKSKELKKMDKPRKKKLKLGADKSKELNK 1550
1551 LAKKLAKEEERKKKKEKAAAAKVELVKESTEKKREKKVLDIPSKYDWSGA 1600
1601 EESDDENAVCAAQNCQRPCKDKVDWVQCDGGCDEWFHQVCVGVSPEMAEN 1650
1651 EDYICINCAKKQGPVSPGPAPPPSFIMSYKLPMEDLKETS 1690

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.