 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P29993 from www.uniprot.org...
The NucPred score for your sequence is 0.80 (see score help below)
1 MGDNIIGSASFLHLGDIVSLYAEGSVCGFLSTLGLVDDRTVVCPEAGDLS 50
51 CPPKKFRDCLIKICPMNRYSAQKQFWKAAKQSASSNTDPNLLKRLHHAAE 100
101 IEKKQNETENKKLLGTSIQYGRAVVQLLHLKSNKYLTVNKRLPSLLEKNA 150
151 MRVYLDANGNEGSWFYIKPFYKLRSIGDYVVVVGDKVILSPVNADQQNLH 200
201 VAANYELPDNPGCKEVNVLNSSTSWKISLFMEHKENQEHILKGGDVVRLF 250
251 HAEQEKFLTMDEYKKQYHVFLRTTGRTSATAATSSKALWEIEVVQHDSCR 300
301 GGAGDWNSLYRFKHLATGHYLAAEAEIDVSAGAMSATSASGHDLHLGDCS 350
351 KDSGLSCSTMNSTINDKPKGKQYRLVSVPYSADIASVFVLDATTMARPDS 400
401 LVPQSSYVRLQHICSNTWVHATSIPIDADDDKPVMSMVCCSPIKEDKEAF 450
451 ALIPVSPVEVRDLDFANDACKVLATVTSKLDNGSISINERRALISLLQDI 500
501 VYFIAGMENEQNKTKALEFTIKNPIRDRQKLLREQYILKQLFKILQGPFQ 550
551 EHTAGDGPFLRLDELSDPKNSPYKNIFRLCYRILRLSQQDYRKNQEYIAK 600
601 HFGLMQKQIGYDILAEDTITALLHNNRKLLEKHITAAEIETFVGLVRKNM 650
651 HNWDSRFLDYLSDLCVSNRKAIAVTQELICKSVLSDKNKDILIETQVKAL 700
701 RTGSGPVRCYKGNSEDVCLATLAEDPGDDEDRSDVQSTSTTTTWDSASLN 750
751 EDDGTPSTGDKYEIHLKWTGQPTSRSMADLASCDGGELEAAILNYYRHQL 800
801 NLFSNMCLNRQYLALNELSPRLDIDLILKCMSDETMPYELRASFCRLMLH 850
851 LHVDRDPQEPVTPVKYARLWSEIPSKMSIQDYDGKNQQPDQNKQACRAKF 900
901 NTTIAFVENYLCNVATKVWLFTDQEQNKLTFEVVKLARDLIYFGFYSFSD 950
951 LLRLTKTLLSILDCVSDTSSGEFASTDIDSVEEETNAEAEGGVLRSIGDI 1000
1001 NTVMTSLALGSVGQAIAAPTISLQQRKSVSQLMKEYPLVMDTKLKIIEIL 1050
1051 QFILDVRLDYRISCLLSIFKREFDESEVAASAASNEASQQQSQQQEPQTP 1100
1101 GSSNETDPLDSAESVAAGAAAAAATTARQKNIDLESIGVQAEGIFDCERS 1150
1151 DAANLDLDGQGGRTFLRVLLHLIMHDYAPLVSGALHLLFRHFSQRQEVLQ 1200
1201 AFRQVQLLVSDSDVESYKQIKSDLDILRQSVEKSELWVYKAKATDELGAT 1250
1251 DAGGDAVSLEYNAALSQEQRNEYRKVKEILIRMNKFCVTASGPGSVVKPR 1300
1301 KHEQRLLRNVGVHTVVLDLLQNPYDEKDDELMKELMCLAHEFLQNFCLGN 1350
1351 QQNQVLLHNHLDLFLNPGILEAKTVCAIFKDNLALCNEVTDKVVQHFVHC 1400
1401 IEIHGRHVAYLQFLQTVVAAENQFIRRCQDMVMQELINSGEDVLVFYNDK 1450
1451 GSFNHFVQMMQQQMLGMEKLSDDSPLKYHVELVKLLACCTMGKNVYTEIK 1500
1501 CNNLLSLDDIVTIICHPLCMPEVKEAYVDFLNHCYIDTEVEMKEIYASGH 1550
1551 MWSLFEKSFLVDINQLITNPAAASNKTLQAYVLNGVTNLLGSFFASPFSD 1600
1601 QSAIVQSRQLIFVQLLQAAHRITQCRWLSLGDRFNVENCIRTLTESAKMR 1650
1651 SIALPPELEQQVATMSSKTAMLTRQTTKWLLASKQPKYEAQQAASLMRWD 1700
1701 RSIIEGLQDIVSLLEDQLKPVVEAELSLLVDILYRSELLFPAGTEARKRC 1750
1751 ESGGFIRKLIKHTEKLLEEKEERMCVKVLRTLREMMAIDVNYGEKGDALR 1800
1801 QTLLLRYFQTKSTPRLPEDEVPLLAAPLMDPAKQNHLVTHGPGAKYLQRA 1850
1851 GKTLHEMQNHLDREGASDLVVELVIKSVHSPNIFVEAVELGIALLEGGNP 1900
1901 IIQKGMFQKFLSDDLNQAFFKVFFEKMKDAQQEIKSTVTVNTTDIAAKAH 1950
1951 EHKQDTNLELDKIARKHGLKSNGVVITEELKRELHNAGLATARAYGNARN 2000
2001 IHSGEESSAISVNSPLEDILAEKLEKHKDSRDQRNQLSNKVLVMQPILRF 2050
2051 LQLLCENHNPDMQNLLRNQNNKTNNNLVSETLMFLDCICGSTTGGLGLLG 2100
2101 LYINEHNLALINQTLEALTEYCQGPCHENQNCIATHESNGLDIITALILN 2150
2151 NINPLGENRMDLVLELKNNASKLLLAIMESRGDSENAERILYNMNPKQLV 2200
2201 EVACKAYHQEELIDEQDDGDEPDAGSDDDDATVSPREVGHNIYILCHQLA 2250
2251 QHNKELAGLLKASEDPQSASFDAKTSQALMYYATHTAQIEIVRNDRTLEQ 2300
2301 IVFPIPEICEYLTTDTKIKILNTAERDDQGSKLADFFDKAEEMFNEMKWQ 2350
2351 KKLRSQPLLFWISSYMSLWSNILFNCVVVINMIVAFFYPFDNTVPELSSH 2400
2401 ISLLFWIITIFSLVIVLALPRESGIRTFIGSVILRFIFLLGPESTLCLLG 2450
2451 VVTVTLKSVHIVSIMGNKGTLEKQLIKIITDFQLLYHCIYIAFCFCGLIF 2500
2501 HPFFYSLLLFDVVYREETLVNVIRSVTRNGRSIVLTAVLALILVYLFSII 2550
2551 GYMFFKDDFLVSVDFEEQDNAPPPSVPLTLSVPVSGDSCSAPDDLGNCQA 2600
2601 AKEVAPPSAGGGEVKERSCDSLVMCIVTTLNQGLRNGGGIGDILRAPSSK 2650
2651 EGLFVARVIYDLLFFFIVIIIVLNLIFGVIIDTFADLRSEKQQKEAILKT 2700
2701 TCFICSLNRSAFDNKTVSFEEHIKSEHNMWHYLYFIVLVKVKDPTEFTGP 2750
2751 ESYVYAMVKAGILEWFPRLRAMSLAAVDADGEQIELRSMQAQLLDTQLLI 2800
2801 KNLSTQLHELKDHMTEQRKQKQRLGLLNTTANSLLPFQ 2838
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.