| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P30415 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MGAQDRPQCHFDIEINREPVGRIMFQLFSDICPKTCKNFLCLCSGEKGLG 50
51 KTTGKKLCYKGSTFHRVVKNFMIQGGDFSEGNGKGGESIYGGYFKDENFI 100
101 LKHDRAFLLSMANRGKHTNGSQFFITTKPAPHLDGVHVVFGLVISGFEVI 150
151 EQIENLKTDAASRPYADVRVIDCGVLATKLTKDVFEKKRKKPTCSEGSDS 200
201 SSRSSSSSESSSESEVERETIRRRRHKRRPKVRHAKKRRKEMSSSEEPRR 250
251 KRTVSPEGYSERSDVNEKRSVDSNTKREKPVVRPEEIPPVPENRFLLRRD 300
301 MPAITVEPEQNIPDVAPVVSDQKPSVSKSGRKIKGRGTIRYHTPPRSRSH 350
351 SESKDDDSSETPPHWKEEMQRLRAYRPPSGEKWSKGDKLSDPCSSRWDER 400
401 SLSQRSRSWSYNGYYSDLSTARHSDGHHKKHRKEKKFKHKKKAKKQKHCR 450
451 RHRQTKKRRIVMPDLEPSRSPTHRMKSSCVRERRSRASSSSSHHSSKRDW 500
501 SKSDQDDGSASTHSSRDSYRSKSHSRSDSRGSSRSRAVSKSSSRSLNRSK 550
551 SRSSSRSGPRRTSISPKKPAQLSENKPVKTEPLRPSVPQNGNVLVQPVAA 600
601 ENIPVIPLSDSPPPSRWKPGQKPWKPSYERIQEMKAKTTHLLPVQSTYSL 650
651 TNIKATVSSSSYHKREKPSESDGSAYSKYSDRSSGSSGRSGSKSSRSRSS 700
701 SRSYTRSRSRSLPTSRSLSRSPSSRSHSPNKYSDGSQHSRSSSYTSVSSD 750
751 DGRRAMFRSNRKKSVTSHKRHRSNSEKTLHSKYVRGREKSSRHRKYSESR 800
801 SSLDYSSDSDQSHVQVYSAPEKEKQGKVEALNDKQGKGREEGKPKPEWEC 850
851 PRSKKRTPKDHSRDDSVSKGKNCAGSKWDSESNSEQDVTKSRKSDPRRGS 900
901 EKEEGEASSDSESEVGQSHIKAKPPAKPPTSTFLPGSDGAWKSRRPQSSA 950
951 SESESSCSNLGNIRGEPQKQKHSKDDLKGDHTKRAREKSKAKKDKKHKAP 1000
1001 KRKQAFHWQPPLEFGDDEEEEMNGKQVTQDPKEKRHVSEKCEAVKDGIPN 1050
1051 VEKTCDEGSSPSKPKKGTLEQDPLAEGGHDPSSCPAPLKVEDNTASSPPS 1100
1101 AQHLEEHGPGGGEDVLQTDDNMEICTPDRTSPAKGEVVSPLANHRLDSPE 1150
1151 VNIIPEQDECMAHPRAGGEQESSMSESKTLGESGVKQDSSTSVTSPVETS 1200
1201 GKKEGAEKSQMNLTDKWKPLQGVGNLSVSTATTSSALDVKALSTVPEVKP 1250
1251 QGLRIEIKSKNKVRPGSLFDEVRKTARLNRRPRNQESSSDDQTPSRDGDS 1300
1301 QSRSPHRSRSKSETKSRHRTRSVSYSHSRSRSRSSTSSYRSRSYSRSRSR 1350
1351 DWYSRGRTRSRSSSYGSFHSHRTSSRSRSRSSSYDLHSRSRSYTYDSYYS 1400
1401 RSRSRSRSQRSDSYHRGRSYNRRSRSGRSYGSDSESDRSYSHHRSPSESS 1450
1451 RYS 1453
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.