SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P30432 from www.uniprot.org...

The NucPred score for your sequence is 0.84 (see score help below)

   1  MSNTTRSSRVTIGRIGTTPQITDPWSSGLEKQRPSRCGGPKSLAEPTYRK    50
51 IGRRKMMLHMRVHDPGTTVTQRAKETATAKLNRIYLCTFNRMAQSCIYFV 100
101 LFLVILSPNTSCALRSSAGETQNYVGILSNDSATTTYDVSSLHSSRRTNP 150
151 PSSSSSSSSNVDVDYRNDRELHKVDLVGLGGERAGQAETISGGKYDYNYE 200
201 NTHTNASAKDEIVERQSNSLDFDGVDMFGAFSIPEEAIYTNEFAVNIPAG 250
251 KQMADVIATKHGFINRGQIGSLDNYYLFQHHHVSKRSLRSSRKHQGALKS 300
301 ENEVKWMQQQHEKVRRKRDGPYQDLPTYSPYNLLRQHGGYVVDPNPHLSF 350
351 SPESISLASHSQRMEYRDVSSHFIFPDPLFKEQWYLNGGAKDGLDMNVGP 400
401 AWQKGYTGKGVVVSILDDGIQTNHPDLAQNYDPEASFDINGNDSDPTPQD 450
451 NGDNKHGTRCAGEVAAVAFNNFCGVGVAYNASIGGVRMLDGKVNDVVEAQ 500
501 ALSLNPSHIDIYSASWGPEDDGSTVDGPGPLARRAFIYGVTSGRQGKGSI 550
551 FVWASGNGGRYTDSCNCDGYTNSIFTLSISSATQAGFKPWYLEECSSTLA 600
601 TTYSSGTPGHDKSVATVDMDGSLRPDHICTVEHTGTSASAPLAAGICALA 650
651 LEANPELTWRDMQYLVVYTSRPAPLEKENGWTLNGVKRKYSHKFGYGLMD 700
701 AGAMVSLAEQWTSVPPQHICKSRENNEDRKIDGAYGSTLSTHMDVNGCAG 750
751 TINEVRYLEHVQCRITLRFFPRGNLRILLTSPMGTTSTLLFERPRDIVKS 800
801 NFDDWPFLSVHFWGEKAEGRWTLQVINGGRRRVNQPGILSKWQLIFYGTS 850
851 TQPMRLKSELLNSSPQLRSPSSSNPFLFPSASNIGQPANEGGNFNTDSFA 900
901 SYLNYQNIFSSAGSDPEPATATLDGQNVTAAIAGGSSAESLGFTASAAQL 950
951 VAAPETRDGDKKILHSCDAECDSSGCYGRGPTQCVACSHYRLDNTCVSRC 1000
1001 PPRSFPNQVGICWPCHDTCETCAGAGPDSCLTCAPAHLHVIDLAVCLQFC 1050
1051 PDGYFENSRNRTCVPCEPNCASCQDHPEYCTSCDHHLVMHEHKCYSACPL 1100
1101 DTYETEDNKCAFCHSTCATCNGPTDQDCITCRSSRYAWQNKCLISCPDGF 1150
1151 YADKKRLECMPCQEGCKTCTSNGVCSECLQNWTLNKRDKCIVSGSEGCSE 1200
1201 SEFYSQVEGQCRPCHASCGSCNGPADTSCTSCPPNRLLEQSRCVSGCREG 1250
1251 FFVEAGSLCSPCLHTCSQCVSRTNCSNCSKGLELQNGECRTTCADGYYSD 1300
1301 RGICAKCYLSCHTCSGPRRNQCVQCPAGWQLAAGECHPECPEGFYKSDFG 1350
1351 CQKCHHYCKTCNDAGPLACTSCPPHSMLDGGLCMECLSSQYYDTTSATCK 1400
1401 TCHDSCRSCFGPGQFSCKGCVPPLHLDQLNSQCVSCCQNQTLAEKTSSAA 1450
1451 CCNCDGETGECKATSTGGKRRTVVGSGSAYKSSESKHGSFENDGNAREFV 1500
1501 LRLDSPLTAITAIAVAICLLIITIFSIIFAVLQRNSNHVSRNSVRYRKIA 1550
1551 NTSSGRRKNLSAKPTSDARFIFNIGEDDDTDGDNSDDELDGNVGTDINNR 1600
1601 IVYDRKGNDHGHEFYIESTNDIDAIEFHCNGAGAQKAETQLQRCNANGDD 1650
1651 DDILHYDRHTNAERKNHPSSTTSRTNIRS 1679

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.