SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P31695 from www.uniprot.org...

The NucPred score for your sequence is 0.63 (see score help below)

   1  MQPQLLLLLLLPLNFPVILTRELLCGGSPEPCANGGTCLRLSRGQGICQC    50
51 APGFLGETCQFPDPCRDTQLCKNGGSCQALLPTPPSSRSPTSPLTPHFSC 100
101 TCPSGFTGDRCQTHLEELCPPSFCSNGGHCYVQASGRPQCSCEPGWTGEQ 150
151 CQLRDFCSANPCANGGVCLATYPQIQCRCPPGFEGHTCERDINECFLEPG 200
201 PCPQGTSCHNTLGSYQCLCPVGQEGPQCKLRKGACPPGSCLNGGTCQLVP 250
251 EGHSTFHLCLCPPGFTGLDCEMNPDDCVRHQCQNGATCLDGLDTYTCLCP 300
301 KTWKGWDCSEDIDECEARGPPRCRNGGTCQNTAGSFHCVCVSGWGGAGCE 350
351 ENLDDCAAATCAPGSTCIDRVGSFSCLCPPGRTGLLCHLEDMCLSQPCHV 400
401 NAQCSTNPLTGSTLCICQPGYSGSTCHQDLDECQMAQQGPSPCEHGGSCI 450
451 NTPGSFNCLCLPGYTGSRCEADHNECLSQPCHPGSTCLDLLATFHCLCPP 500
501 GLEGRLCEVEVNECTSNPCLNQAACHDLLNGFQCLCLPGFTGARCEKDMD 550
551 ECSSTPCANGGRCRDQPGAFYCECLPGFEGPHCEKEVDECLSDPCPVGAS 600
601 CLDLPGAFFCLCRPGFTGQLCEVPLCTPNMCQPGQQCQGQEHRAPCLCPD 650
651 GSPGCVPAEDNCPCHHGHCQRSLCVCDEGWTGPECETELGGCISTPCAHG 700
701 GTCHPQPSGYNCTCPAGYMGLTCSEEVTACHSGPCLNGGSCSIRPEGYSC 750
751 TCLPSHTGRHCQTAVDHCVSASCLNGGTCVNKPGTFFCLCATGFQGLHCE 800
801 EKTNPSCADSPCRNKATCQDTPRGARCLCSPGYTGSSCQTLIDLCARKPC 850
851 PHTARCLQSGPSFQCLCLQGWTGALCDFPLSCQKAAMSQGIEISGLCQNG 900
901 GLCIDTGSSYFCRCPPGFQGKLCQDNVNPCEPNPCHHGSTCVPQPSGYVC 950
951 QCAPGYEGQNCSKVLDACQSQPCHNHGTCTSRPGGFHCACPPGFVGLRCE 1000
1001 GDVDECLDRPCHPSGTAACHSLANAFYCQCLPGHTGQRCEVEMDLCQSQP 1050
1051 CSNGGSCEITTGPPPGFTCHCPKGFEGPTCSHKALSCGIHHCHNGGLCLP 1100
1101 SPKPGSPPLCACLSGFGGPDCLTPPAPPGCGPPSPCLHNGTCTETPGLGN 1150
1151 PGFQCTCPPDSPGPRCQRPGASGCEGRGGDGTCDAGCSGPGGDWDGGDCS 1200
1201 LGVPDPWKGCPPHSQCWLLFRDGRCHPQCDSEECLFDGYDCEIPLTCIPA 1250
1251 YDQYCRDHFHNGHCEKGCNNAECGWDGGDCRPEGEDSEGRPSLALLVVLR 1300
1301 PPALDQQLLALARVLSLTLRVGLWVRKDSEGRNMVFPYPGTRAKEELSGA 1350
1351 RDSSSWERQAPPTQPLGKETESLGAGFVVVMGVDLSRCGPEHPASRCPWD 1400
1401 SGLLLRFLAAMAAVGALEPLLPGPLLAAHPQAGTRPSANQLPWPILCSPV 1450
1451 VGVLLLALGALLVLQLIRRRRREHGALWLPPGFIRRPQTQQAPHRRRPPL 1500
1501 GEDNIGLKALKPEAEVDEDGVAMCSGPEEGEAEETASASRCQLWPLNSGC 1550
1551 GELPQAAMLTPPQECESEVLDVDTCGPDGVTPLMSAVFCGGVQSTTGASP 1600
1601 QRLGLGNLEPWEPLLDRGACPQAHTVGTGETPLHLAARFSRPTAARRLLE 1650
1651 AGANPNQPDRAGRTPLHTAVAADAREVCQLLLASRQTTVDARTEDGTTPL 1700
1701 MLAARLAVEDLVEELIAARADVGARDKRGKTALHWAAAVNNARAARSLLQ 1750
1751 AGADKDAQDSREQTPLFLAAREGAVEVAQLLLELGAARGLRDQAGLAPGD 1800
1801 VARQRSHWDLLTLLEGAGPTTQEARAHARTTPGGGAAPRCRTLSAGARPR 1850
1851 GGGACLQARTWSVDLGARGGKVYARCRSRSGSCGGPTTRGRRFSAGSRGR 1900
1901 RGARASQDDWPRDWVALEACGSACSAPIPPPSLTPSPERGSPQVAWGLPV 1950
1951 HQEIPLNSVVRNLN 1964

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.