SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P32492 from www.uniprot.org...

The NucPred score for your sequence is 0.95 (see score help below)

   1  MSFEVGTKCWYPHKEQGWIGGEVTKNDFFEGTFHLELKLEDGETVSIETN    50
51 SFENDDDHPTLPVLRNPPILESTDDLTTLSYLNEPAVLHAIKKRYMNGQI 100
101 YTYSGIVLIAANPFDKVDHLYSREMIQNYSSKRKDELEPHLFAIAEEAYR 150
151 FMVHEKANQTVVVSGESGAGKTVSAKYIMRYFASVQESNNREGEVEMSQI 200
201 ESQILATNPIMEAFGNAKTTRNDNSSRFGKYLQILFDENTTIRGSKIRTY 250
251 LLEKSRLVYQPETERNYHIFYQILEGLPEPVKQELHLSSPKDYHYTNQGG 300
301 QPNIAGIDEAREYKITTDALSLVGINHETQLGIFKILAGLLHIGNIEMKM 350
351 TRNDASLSSEEQNLQIACELLGIDPFNFAKWIVKKQIVTRSEKIVTNLNY 400
401 NQALIARDSVAKFIYSTLFDWLVDNINKTLYDPELDQQDHVFSFIGILDI 450
451 YGFEHFEKNSFEQFCINYANEKLQQEFNQHVFKLEQEEYVKEEIEWSFIE 500
501 FSDNQPCIDLIENKLGILSLLDEESRLPSGSDESWASKLYSAFNKPPSNE 550
551 VFSKPRFGQTKFIVSHYAVDVEYEVEGFIEKNRDSVSLGHLDVFKATTNP 600
601 IFKQILDNRELRSDDAPEEQNTEKKIMIPARLSQKKPTLGSMFKKSLGEL 650
651 MAIINSTNVHYIRCIKPNSEKKPWEFDNLMVLSQLRACGVLETIRISCAG 700
701 FPSRWTFDEFVQRYFLLTDYSLWSGILYNPDLPKEAIVNFCQSILDATIS 750
751 DSAKYQIGNTKIFFKAGMLAFLEKLRTNKMNEICIIIQKKIRARYYRLQY 800
801 LQTMESIKKCQSQIRSLLVRTRVDHELKTRAAILLQTNIRALWKREYYRA 850
851 AIGQIIKLQCTCKRKLILDSVNRKFMLMAAVIIQSYIRSYGHKTDYRTLK 900
901 RSSILVQSAMRMQLARRRYIVLQKEVEERNIRASYGIGLLEEAIEFKNSF 950
951 ILNLEMLNDSYTRLTQLLQGDLSNIPSKQRQEYETIVNGYNDKISKLKTL 1000
1001 QVEIMNTLNKKNALKERKKKQSSLIQSHMQSLAAIKGNKPSRLSDEVKSM 1050
1051 KQELAFIENVIAQDFTTTYSANKNDKVKGLGIAGQQVKPKLVNVIRRESG 1100
1101 NPDLLELLMDLNCYTLEVTEGYLKKVNVTEVNGDNVLGPIHVITTVVSSL 1150
1151 VRNGLLIQSSKFISKVLLTVESIVMSLPKDETMLGGIFWLSNLSRLPAFA 1200
1201 ANQKTLYEANGGDEKDKLTLIYLNDLENETLKVFDKIYSTWLVKFMKHAS 1250
1251 AHIEIFDMVLNEKLFKNSGDEKFAKLFTFLNEFDAVLCKFQVVDSMHTKI 1300
1301 FNDTLKYLNVMLFNDLITKCPALNWKYGYEVDRNIERLVSWFEPRIEDVR 1350
1351 PNLIQIIQAVKILQLKISNLNEFKLLFDFWYALNPAQIQAILLKYKPANK 1400
1401 GEAGVPNEILNYLANVIKRENLSLPGKMEIMLSAQFDSAKNHLRYDTSAI 1450
1451 TQNSNTEGLATVSKIIKLDRK 1471

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.