 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P32644 from www.uniprot.org...
The NucPred score for your sequence is 0.81 (see score help below)
1 MDFQCRTCSQAYDAEQMMKHLSSTRHKTVFDTSNDEDICCEECQDKNIHQ 50
51 LQIIRFGGEDMVLLCNSCFRKEYSETERPSTSYSLQNGSILKFWEKYVKV 100
101 RECCCDECGEESNLNANRNGEVLCDKCLPKSNRAKDFVSEKSGRFLYIYL 150
151 GLNETQNSTRKPRKKGGRRVGRGKKGRKGAKIKKEKKETFEAKISRIAYE 200
201 VKKENSTIQSSSSSNLRNFKGFKAVESDPVVAAKVSKSETSRSNPGPSNR 250
251 NKGKGNKANHKKNSGNGIGKEKERKTNIRNNVRNSQPIPEDRKNTNSHVT 300
301 TNSGGKGKNESVDKHQLPQPKALNGNGSGSTNTTGLKKGKKDHAGQKTKG 350
351 NDKTGNKNPREAKLNSAGRKNALGKKSNNQPNKGTSRWTIGSDTESSREP 400
401 SISPNENTTSITKSRNRNKKASKPTLNEKSKTTTMPKKLETKNQEKNNGK 450
451 TKDGKLIYEEGEPLTRYNTFKSTLSYPDLNTYLNDYSFALFLEQKLENEF 500
501 VQNFNILWPRNEKDTAFIINVEKNNNSELEKLLPANLLALGRPAFNERQP 550
551 FFFCTQDEQKVWYIFIKELSIQRGKYVLLVELFSWNNLSLPTKNGSSQFK 600
601 LLPTSAQTSRILFAMTRITNPKFIDLLLGQKPIKEIYFDNRLKFSSDKLN 650
651 RSQKTAVEHVLNNSITILQGPPGTGKTSTIEEIIIQVIERFHAFPILCVA 700
701 ASNIAIDNIAEKIMENRPQIKILRILSKKKEQQYSDDHPLGEICLHNIVY 750
751 KNLSPDMQVVANKTRRGEMISKSEDTKFYKEKNRVTNKVVSQSQIIFTTN 800
801 IAAGGRELKVIKECPVVIMDEATQSSEASTLVPLSLPGIRNFVFVGDEKQ 850
851 LSSFSNIPQLETSLFERVLSNGTYKNPLMLDTQYRMHPKISEFPIKKIYN 900
901 GELKDGVTDEQKAWPGVQHPLFFYQCDLGPESRVRSTQRDIVGFTYENKH 950
951 ECVEIVKIIQILMLDKKVPLEEIGVITPYSAQRDLLSDILTKNVVINPKQ 1000
1001 ISMQQEYDEIELFNAAGSQGTAGSLQNNVINIINGLHVATVDSFQGHEKS 1050
1051 FIIFSCVRNNTENKIGFLRDKRRLNVALTRAKHGLIVVGNKNVLRKGDPL 1100
1101 WKDYITYLEEQEVIFTDLTAY 1121
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.