SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P32657 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MAAKDISTEVLQNPELYGLRRSHRAAAHQQNYFNDSDDEDDEDNIKQSRR    50
51 KRMTTIEDDEDEFEDEEGEEDSGEDEDEEDFEEDDDYYGSPIKQNRSKPK 100
101 SRTKSKSKSKPKSQSEKQSTVKIPTRFSNRQNKTVNYNIDYSDDDLLESE 150
151 DDYGSEEALSEENVHEASANPQPEDFHGIDIVINHRLKTSLEEGKVLEKT 200
201 VPDLNNCKENYEFLIKWTDESHLHNTWETYESIGQVRGLKRLDNYCKQFI 250
251 IEDQQVRLDPYVTAEDIEIMDMERERRLDEFEEFHVPERIIDSQRASLED 300
301 GTSQLQYLVKWRRLNYDEATWENATDIVKLAPEQVKHFQNRENSKILPQY 350
351 SSNYTSQRPRFEKLSVQPPFIKGGELRDFQLTGINWMAFLWSKGDNGILA 400
401 DEMGLGKTVQTVAFISWLIFARRQNGPHIIVVPLSTMPAWLDTFEKWAPD 450
451 LNCICYMGNQKSRDTIREYEFYTNPRAKGKKTMKFNVLLTTYEYILKDRA 500
501 ELGSIKWQFMAVDEAHRLKNAESSLYESLNSFKVANRMLITGTPLQNNIK 550
551 ELAALVNFLMPGRFTIDQEIDFENQDEEQEEYIHDLHRRIQPFILRRLKK 600
601 DVEKSLPSKTERILRVELSDVQTEYYKNILTKNYSALTAGAKGGHFSLLN 650
651 IMNELKKASNHPYLFDNAEERVLQKFGDGKMTRENVLRGLIMSSGKMVLL 700
701 DQLLTRLKKDGHRVLIFSQMVRMLDILGDYLSIKGINFQRLDGTVPSAQR 750
751 RISIDHFNSPDSNDFVFLLSTRAGGLGINLMTADTVVIFDSDWNPQADLQ 800
801 AMARAHRIGQKNHVMVYRLVSKDTVEEEVLERARKKMILEYAIISLGVTD 850
851 GNKYTKKNEPNAGELSAILKFGAGNMFTATDNQKKLEDLNLDDVLNHAED 900
901 HVTTPDLGESHLGGEEFLKQFEVTDYKADIDWDDIIPEEELKKLQDEEQK 950
951 RKDEEYVKEQLEMMNRRDNALKKIKNSVNGDGTAANSDSDDDSTSRSSRR 1000
1001 RARANDMDSIGESEVRALYKAILKFGNLKEILDELIADGTLPVKSFEKYG 1050
1051 ETYDEMMEAAKDCVHEEEKNRKEILEKLEKHATAYRAKLKSGEIKAENQP 1100
1101 KDNPLTRLSLKKREKKAVLFNFKGVKSLNAESLLSRVEDLKYLKNLINSN 1150
1151 YKDDPLKFSLGNNTPKPVQNWSSNWTKEEDEKLLIGVFKYGYGSWTQIRD 1200
1201 DPFLGITDKIFLNEVHNPVAKKSASSSDTTPTPSKKGKGITGSSKKVPGA 1250
1251 IHLGRRVDYLLSFLRGGLNTKSPSADIGSKKLPTGPSKKRQRKPANHSKS 1300
1301 MTPEITSSEPANGPPSKRMKALPKGPAALINNTRLSPNSPTPPLKSKVSR 1350
1351 DNGTRQSSNPSSGSAHEKEYDSMDEEDCRHTMSAIRTSLKRLRRGGKSLD 1400
1401 RKEWAKILKTELTTIGNHIESQKGSSRKASPEKYRKHLWSYSANFWPADV 1450
1451 KSTKLMAMYDKITESQKK 1468

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.