SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P33173 from www.uniprot.org...

The NucPred score for your sequence is 0.87 (see score help below)

   1  MAGASVKVAVRVRPFNSREMSRDSKCIIQMSGSTTTIVNPKQPKETPKSF    50
51 SFDYSYWSHTSPEDINYASQKQVYRDIGEEMLQHAFEGYNVCIFAYGQTG 100
101 AGKSYTMMGKQEKDQQGIIPQLCEDLFSRINDTTNDNMSYSVEVSYMEIY 150
151 CERVRDLLNPKNKGNLRVREHPLLGPYVEDLSKLAVTSYNDIQDLMDSGN 200
201 KPRTVAATNMNETSSRSHAVFNIIFTQKRHDAETNITTEKVSKISLVDLA 250
251 GSERADSTGAKGTRLKEGANINKSLTTLGKVISALAEMDSGPNKNKKKKK 300
301 TDFIPYRDSVLTWLLRENLGGNSRTAMVAALSPADINYDETLSTLRYADR 350
351 AKQIRCNAIINEDPNNKLIRELKDEVTRLRDLLYAQGLGDITDMTNALVG 400
401 MSPSSSLSALSSRAASVSSLHERILFAPGSEEAIERLKETEKIIAELNET 450
451 WEEKLRRTEAIRMEREALLAEMGVAMREDGGTLGVFSPKKTPHLVNLNED 500
501 PLMSECLLYYIKDGVTRVGREDAERRQDIVLSGHFIKEEHCIFRSDSRGG 550
551 GEAVVTLEPCEGADTYVNGKKVTEPSILRSGNRIIMGKSHVFRFNHPEQA 600
601 RQERERTPCAETPAEPVDWAFAQRELLEKQGIDMKQEMEQRLQELEDQYR 650
651 REREEATYLLEQQRLDYESKLEALQKQMDSRYYPEVNEEEEEPEDEVQWT 700
701 ERECELALWAFRKWKWYQFTSLRDLLWGNAIFLKEANAISVELKKKVQFQ 750
751 FVLLTDTLYSPLPPDLLPPEAAKDRETRPFPRTIVAVEVQDQKNGATHYW 800
801 TLEKLRQRLDLMREMYDRAAEVPSSVVEDCDNVVTGGDPFYDRFPWFRLV 850
851 GRAFVYLSNLLYPVPLVHRVAIVSEKGEVKGFLRVAVQAISADEEAPDYG 900
901 SGVRQSGTAKISFDDQHFEKFQSESCPVVGMSRSGTSQEELRIVEGQGQG 950
951 ADAGPSADEVNNNTCSAVPPEGLMDSPEKAALDGPLDTALDHLRLGSTFT 1000
1001 FRVTVLQASSISAEYADIFCQFNFIHRHDEAFSTEPLKNTGRGPPLGFYH 1050
1051 VQNIAVEVTKSFIEYIKSQPIVFEVFGHYQQHPFPPLCKDVLSPLRPSRR 1100
1101 HFPRVMPLSKPVPATKLSTMTRPSPGPCHCKYDLLVYFEICELEANGDYI 1150
1151 PAVVDHRGACMGTFLLHQGIQRRITVTLLHETGSHIRWKEVRELVVGRIR 1200
1201 NTPETDEALIDPNILSLNILSSGYVHPAQDDRVFFGNDTRTFYQFEAAWD 1250
1251 SSMHNSLLLNRVTPYREKIYMTLSAYIEMENCTQPAVITKDFCMVFYSRD 1300
1301 AKLPASRSIRNLFGSGSLRATEGNRVTGVYELSLCHVADAGSPGMQRRRR 1350
1351 RVLDTSVAYVRGEENLAGWRPRSDSLILDHQWELEKLSLLQEVEKTRHYL 1400
1401 LLREKLETTQRPGPEVLSPASSEDSESRSSSGASSPLSAEGQPSPLEAPN 1450
1451 ERQRELAVKCLRLLMHTFNREYTHSHVCISASESKLSEMSVTLMRDPSMS 1500
1501 PLGAATLTPSSTCPSLIEGRYGATDVRTPQPCSRPASPEPELLPELDSKK 1550
1551 TPSPVRATETEKEPQRLLVPDIQEIRVSPIVSKKGYLHFLEPHTAGWAKR 1600
1601 FVVVRRPYAYMYNSDKDTVERFVLNLSTAQVEYSEDQQAMLKTPNTFAVC 1650
1651 TEHRGILLQANSDKDMHDWLYAFNPLLAGTIRSKLSRRRSAQMRV 1695

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.