 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P33202 from www.uniprot.org...
The NucPred score for your sequence is 0.71 (see score help below)
1 MSENNSHNLDEHESHSENSDYMMDTQVEDDYDEDGHVQGEYSYYPDEDED 50
51 EHMLSSVGSFEADDGEDDDNDYHHEDDSGLLYGYHRTQNGSDEDRNEEED 100
101 GLERSHDNNEFGSNPLHLPDILETFAQRLEQRRQTSEGLGQHPVGRTLPE 150
151 ILSMIGGRMERSAESSARNERISKLIENTGNASEDPYIAMESLKELSENI 200
201 LMMNQMVVDRIIPMETLIGNIAAILSDKILREELELQMQACRCMYNLFEV 250
251 CPESISIAVDEHVIPILQGKLVEISYIDLAEQVLETVEYISRVHGRDILK 300
301 TGQLSIYVQFFDFLTIHAQRKAIAIVSNACSSIRTDDFKTIVEVLPTLKP 350
351 IFSNATDQPILTRLVNAMYGICGALHGVDKFETLFSLDLIERIVQLVSIQ 400
401 DTPLENKLKCLDILTVLAMSSDVLSRELREKTDIVDMATRSFQHYSKSPN 450
451 AGLHETLIYVPNSLLISISRFIVVLFPPEDERILSADKYTGNSDRGVISN 500
501 QEKFDSLVQCLIPILVEIYTNAADFDVRRYVLIALLRVVSCINNSTAKAI 550
551 NDQLIKLIGSILAQKETASNANGTYSSEAGTLLVGGLSLLDLICKKFSEL 600
601 FFPSIKREGIFDLVKDLSVDFNNIDLKEDGNENISLSDEEGDLHSSIEEC 650
651 DEGDEEYDYEFTDMEIPDSVKPKKISIHIFRTLSLAYIKNKGVNLVNRVL 700
701 SQMNVEQEAITEELHQIEGVVSILENPSTPDKTEEDWKGIWSVLKKCIFH 750
751 EDFDVSGFEFTSTGLASSITKRITSSTVSHFILAKSFLEVFEDCIDRFLE 800
801 ILQSALTRLENFSIVDCGLHDGGGVSSLAKEIKIKLVYDGDASKDNIGTD 850
851 LSSTIVSVHCIASFTSLNEFLRHRMVRMRFLNSLIPNLTSSSTEADREEE 900
901 ENCLDHMRKKNFDFFYDNEKVDMESTVFGVIFNTFVRRNRDLKTLWDDTH 950
951 TIKFCKSLEGNNRESEAAEEANEGKKLRDFYKKREFAQVDTGSSADILTL 1000
1001 LDFLHSCGVKSDSFINSKLSAKLARQLDEPLVVASGALPDWSLFLTRRFP 1050
1051 FLFPFDTRMLFLQCTSFGYGRLIQLWKNKSKGSKDLRNDEALQQLGRITR 1100
1101 RKLRISRKTIFATGLKILSKYGSSPDVLEIEYQEEAGTGLGPTLEFYSVV 1150
1151 SKYFARKSLNMWRCNSYSYRSEMDVDTTDDYITTLLFPEPLNPFSNNEKV 1200
1201 IELFGYLGTFVARSLLDNRILDFRFSKVFFELLHRMSTPNVTTVPSDVET 1250
1251 CLLMIELVDPLLAKSLKYIVANKDDNMTLESLSLTFTVPGNDDIELIPGG 1300
1301 CNKSLNSSNVEEYIHGVIDQILGKGIEKQLKAFIEGFSKVFSYERMLILF 1350
1351 PDELVDIFGRVEEDWSMATLYTNLNAEHGYTMDSSIIHDFISIISAFGKH 1400
1401 ERRLFLQFLTGSPKLPIGGFKSLNPKFTVVLKHAEDGLTADEYLPSVMTC 1450
1451 ANYLKLPKYTSKDIMRSRLCQAIEEGAGAFLLS 1483
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.