SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P34158 from www.uniprot.org...

The NucPred score for your sequence is 0.65 (see score help below)

   1  MQKSPLEKASFISKLFFSWTTPILRKGYRHHLELSDIYQAPSSDSADHLS    50
51 EKLEREWDREQASKKKPQLIHALRRCFVWRFVFYGVLLYLGEVTKAVQPV 100
101 LLGRIIASYDPDNTEERSIAIYLGIGLCLLFIVRTLLLHPAIFGLHHIGM 150
151 QMRIAMFSLIYKKTLKLSSRVLDKISIGQLISLLSNNLNKFDEGLALAHF 200
201 IWIAPLQVVLLMGLLWDLLQFSAFCGLGLLIVLVIFQAILGKMMVKYRDK 250
251 RAAKINERLVITSEVIDNIYSVKAYCWESAMEKIIESLREEELKMTRRSA 300
301 YMRFFTSSAFFFSGFFVVFLSVLPYTVINGIVLRKIFTTISFCIVLRMSV 350
351 TRQFPTAVQIWYDSLGMIRKIQDFLQTQEYKVLEYNLMFTGLVMENVTAF 400
401 WEEGFQELLEKVQLNNDDRKTSNGENHLSFSHLCLVGNPVLKNINLNIKK 450
451 GEMLAITGSTGAGKTSLLMLILGELEASEGIIKHSGRVSFSSQISWIMPG 500
501 TIKENIIFGVSYDEYRYKSVVKACQLQEDITKFAEQDNTVLGEGGVTLSG 550
551 GQRARISLARAVYKDADLYLLDSPFGYLDVLTEEQIFESCVCKLMASKTR 600
601 ILVTSKMEQLKKADKILILHEGSSYFYGTFSELQSLRPDFSSKLMGYDTF 650
651 DQFTEERRSSILTETLRRFSVDDASTTWNKAKQSFRQTGEFGEKRKNSIL 700
701 SSFSSVKKISIVQKTPLSIEGESDDLQERRLSLVPDSEHGEAALPRSNMI 750
751 TAGPTFPGRRRQSVLDLMTFTPSSVSSSLQRTRASIRKISLAPRISLKEE 800
801 DIYSRRLSQDSTLNITEEINEEDLKECFFDDMVKIPTVTTWNTYLRYFTL 850
851 HRGLFAVLIWCVLVFLVEVAASLFVLWLLKNNPVNGGNNGTKIANTSYVV 900
901 VITSSSFYYIFYIYVGVADTLLALSLFRGLPLVHTLITASKILHRKMLHS 950
951 ILHAPMSTFNKLKAGGILNRFSKDIAILDDFLPLTIFDFIQLLFIVVGAI 1000
1001 IVVSALQPYIFLATVPGLAVFILLRAYFLHTSQQLKQLESEGRSPIFTHL 1050
1051 VTSLKGLWTLRAFRRQTYFETLFHKALNLHTANWFMYLATLRWFQMRIDM 1100
1101 IFVLFFIVVTFISILTTGEGEGTTGIILTLAMNIMSTLQWAVNSSIDTDS 1150
1151 LMRSVSRVFKFIDIQTEESICTKIMKELHSEDSPNALVIKNEHVKKCDTW 1200
1201 PSGGEMVVKDLTVKYVDDGNAILENISFSISPGQRVGLLGRTGSGKSTLL 1250
1251 SAFLRMLNIKGEIQIDGVSWNSMTLQEWRKAFGVITQKVFIFSGTFRQNL 1300
1301 DPNGKWRDEEIWKVADQVGLKSVIEQFPGQLNFTLVDGGYVLSHGHKQLM 1350
1351 CLARSVLSKAKIILLDEPSANLDPITYQVIRRVLRQAFAGCTVVLCEHRI 1400
1401 EAMLDCQRFLVIEQGNVWQYESLQALLSEKSVFQRALSSSEKMKLFHGRH 1450
1451 SSKQKPRTQITAVKEETEEEVQETRL 1476

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.