| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P34228 from www.uniprot.org...
The NucPred score for your sequence is 0.95 (see score help below)
1 MVKDNRDSDQDQDFSSAHMKRQPEQQQLQQHQFPSKKQRISHHDDSHQIN 50
51 HRPVTSCTHCRQHKIKCDASQNFPHPCSRCEKIGLHCEINPQFRPKKGSQ 100
101 LQLLRQDVDEIKSKLDTLLANDSVFVHLLQQIPMGNSLLNKLNLHPTPTP 150
151 GTIIPNPDSSPSSGSPTSSAAQRDSKVSVQTYLSREPQLLQANQGSNTNK 200
201 FKANNEASSHMTLRASSLAQDSKGLVATEPNKLPPLLNDSALPNNSKESL 250
251 PPALQMAFYKNNSAGNTPNGPFSPIQKTYSPHTTSTTVTTTTNQPPFAAT 300
301 SHVATNNNADRTKTPVVATTTTMPLLPSPHANVDEFVLGDISISIEKANR 350
351 LHHIFVTRYLPYFPIMYSNNATELYSQSQLLFWTVMLTACLSDPEPTMYC 400
401 KLSSLIKQLAIETCWIRTPRSTHISQALLILCIWPLPNQKVLDDCSYRFV 450
451 GLAKSLSYQLGLHRGEFISEFTRTQTSMPNAEKWRTRTWLGIFFAELCWA 500
501 SILGLPPTSQTDYLLEKALSCGDEESEEDNNDSIDNNNNDKRNKKDEPHV 550
551 ESKYKLPGSFRRLLSLANFQAKLSHIIGSSTSSPDGLLEPKYRAETLSIL 600
601 GKELDLLAKTLNFQSDDTVNIYFLYVKLTVCCFAFLPETPPTDQIPYVTE 650
651 AYLTATKIVTLLNNLLETHQLIELPIYIRQAATFSALILFKLQLTPLLPD 700
701 KYFDSARQSVVTIHRLYRNQLTAWATSVENDISRTASMLEKLNFVLIMHP 750
751 EVFVEEDGIISRMRSHLTGSLFYDLVWCVHEARRREMDPEYNKQALEKAA 800
801 KKRKFSSNGIYNGTSSTGGITDRKLYPLPLYNHISRDDFETVTKTTPSGT 850
851 TVTTLVPTKNALKQAEKLAKTNNGDSDGSIMEINGIPLSMLGETGSVKFQ 900
901 SLFANTSNSNDYNNNRTLLDASNDISIPSNSIYPVASVPASNNNPQSTKV 950
951 DYYSNGPSVIPDLSMKRSVSTPVNHFPASVPGLRNHPVGNLSNNVTLGID 1000
1001 HPIPREHSNLQNVTMNYNNQFSNANAIGRSQSSMSHSRTPIASKSNNMTD 1050
1051 LHSVVSDPGSSKSTAYPPLSLFSKSNDINSNKTNQRFSTGTNTVTSSNFQ 1100
1101 TIDNENNVKTPGNKLTDFFQQQSAGWIEGNSSNDDFFGWFDMNMEQGF 1148
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.