| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P34244 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MTGHVSKTSHVPKGRPSSLAKKAAKRAMAKVNSNPKRASGHLERVVQSVN 50
51 DATKRLSQPDSTVSVATKSSKRKSRDTVGPWKLGKTLGKGSSGRVRLAKN 100
101 METGQLAAIKIVPKKKAFVHCSNNGTVPNSYSSSMVTSNVSSPSIASREH 150
151 SNHSQTNPYGIEREIVIMKLISHTNVMALFEVWENKSELYLVLEYVDGGE 200
201 LFDYLVSKGKLPEREAIHYFKQIVEGVSYCHSFNICHRDLKPENLLLDKK 250
251 NRRIKIADFGMAALELPNKLLKTSCGSPHYASPEIVMGRPYHGGPSDVWS 300
301 CGIVLFALLTGHLPFNDDNIKKLLLKVQSGKYQMPSNLSSEARDLISKIL 350
351 VIDPEKRITTQEILKHPLIKKYDDLPVNKVLRKMRKDNMARGKSNSDLHL 400
401 LNNVSPSIVTLHSKGEIDESILRSLQILWHGVSRELITAKLLQKPMSEEK 450
451 LFYSLLLQYKQRHSISLSSSSENKKSATESSVNEPRIEYASKTANNTGLR 500
501 SENNDVKTLHSLEIHSEDTSTVNQNNAITGVNTEINAPVLAQKSQFSINT 550
551 LSQPESDKAEAEAVTLPPAIPIFNASSSRIFRNSYTSISSRSRRSLRLSN 600
601 SRLSLSASTSRETVHDNEMPLPQLPKSPSRYSLSRRAIHASPSTKSIHKS 650
651 LSRKNIAATVAARRTLQNSASKRSLYSLQSISKRSLNLNDLLVFDDPLPS 700
701 KKPASENVNKSEPHSLESDSDFEILCDQILFGNALDRILEEEEDNEKERD 750
751 TQRQRQNDTKSSADTFTISGVSTNKENEGPEYPTKIEKNQFNMSYKPSEN 800
801 MSGLSSFPIFEKENTLSSSYLEEQKPKRAALSDITNSFNKMNKQEGMRIE 850
851 KKIQREQLQKKNDRPSPLKPIQHQELRVNSLPNDQGKPSLSLDPRRNISQ 900
901 PVNSKVESLLQGLKFKKEPASHWTHERGSLFMSEHVEDEKPVKASDVSIE 950
951 SSYVPLTTVATSSRDPSVLAESSTIQKPMLSLPSSFLNTSMTFKNLSQIL 1000
1001 ADDGDDKHLSVPQNQSRSVAMSHPLRKQSAKISLTPRSNLNANLSVKRNQ 1050
1051 GSPGSYLSNDLDGISDMTFAMEIPTNTFTAQAIQLMNNDTDNNKINTSPK 1100
1101 ASSFTKEKVIKSAAYISKEKEPDNSDTNYIPDYTIPNTYDEKAINIFEDA 1150
1151 PSDEGSLNTSSSESDSRASVHRKAVSIDTMATTNVLTPATNVRVSLYWNN 1200
1201 NSSGIPRETTEEILSKLRLSPENPSNTHMQKRFSSTRGSRDSNALGISQS 1250
1251 LQSMFKDLEEDQDGHTSQADILESSMSYSKRRPSEESVNPKQRVTMLFDE 1300
1301 EEEESKKVGGGKIKEEHTKLDNKISEESSQLVLPVVEKKENANNTENNYS 1350
1351 KIPKPSTIKVTKDTAMESNTQTHTKKPILKSVQNVEVEEAPSSDKKNWFV 1400
1401 KLFQNFSSHNNATKASKNHVTNISFDDAHMLTLNEFNKNSIDYQLKNLDH 1450
1451 KFGRKVVEYDCKFVKGNFKFKIKITSTPNASTVITVKKRSKHSNTSSNKA 1500
1501 FEKFNDDVERVIRNAGRS 1518
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.